
VERIFICATION
CHALLENGES

AND STRATEGIES
FOR RISC-V

BASED NEAR-
MEMORY AI

ACCELERATORS
SUBMISSION CATEGORY: ASIC / SoC
Verification, RISC-V Verification

AUTHOR NAME: Vinayak V P

UNIVERSITY NAME: Vidyavardhaka College of
Engineering, Mysuru

EXECUTIVE
SUMMARY

01 Near-memory AI accelerators integrated with RISC-V
processors reduce data movement but introduce
complex verification challenges.

02 Custom RISC-V instructions, tightly coupled memory-
compute behavior, and parallel execution make traditional
verification insufficient.

03 This work analyzes key verification challenges and
proposes layered verification strategies for near-
memory AI architectures.

Near-memory AI
acceleration changes how
computation and memory
interact in modern SoCs.
 While it reduces data
movement and power, it
introduces complex
verification challenges due
to custom RISC-V
instructions and parallel
execution.

04 The approach emphasizes functional correctness,
memory consistency, and coverage-driven
verification for scalable AI SoCs.

VERIFICATION
CHALLENGES IN NEAR-
MEMORY RISC-V AI
ARCHITECTURES

Problem statement

Custom RISC-V extensions lack mature
reference models
Near-memory computation violates
conventional memory visibility and
ordering assumptions
Parallel dataflows introduce race
conditions and corner cases
Functional coverage closure is challenging
in parallel AI accelerators

LEVEL 3 VERIFICATION CHALLENGES AND SOLUTIONS

01 Challenge: Lack of Golden Reference Models for Near-Memory
Compute

Solution:
Use hierarchical reference models instead of a single golden model
Instruction-level C/Python models for custom RISC-V instructions
Block-level functional models for near-memory MAC units

02 Challenge: Memory Visibility and Ordering Violations
Solution:

Assertion-based verification for ordering and visibility rules
Stress tests combining load/store operations with near-memory
compute

LEVEL 3 VERIFICATION CHALLENGES AND SOLUTIONS

03 Challenge: Parallel Execution and Race Conditions
Solution:

Constrained-random stimulus targeting parallel execution
Synchronization and completion assertions

04 Challenge: Functional Coverage Closure Difficulty
Solution:

Coverage-driven verification targeting parallel dataflow corner cases

This diagram illustrates the tight
interaction between the
processor and memory in near-
memory architectures.
 While computation moves closer
to data, it also reduces
observability and breaks
traditional assumptions, making
verification more challenging
compared to conventional SoCs.

Verification Challenges:

WHY NEAR-MEMORY RISC-V ARCHITECTURES ARE
HARD TO VERIFY

This diagram presents a verification-
centric view of the system under
verification, consisting of a RISC-V core,
custom instruction control, near-memory
AI accelerator, and memory.
 Verification is performed using
reference models, assertions, and
coverage monitors to validate instruction
correctness, memory consistency, and
parallel execution behavior.

Verification Challenges and Solutions

VERIFICATION VIEW OF A RISC-V BASED NEAR-
MEMORY AI ACCELERATOR

VERIFICATION-RELEVANT ARCHITECTURAL FEATURES

Custom RISC-V
Instruction Extensions

Near-Memory Compute
& Data Visibility

Parallel MAC Execution

Modular RTL Partitioning

Clock Gating & Pipeline
Stages

Custom RISC-V instructions
require instruction-level
functional verification

Near-memory computation
impacts memory visibility and
ordering assumptions

Parallel execution introduces
synchronization and race-
condition risks

Modular RTL enables isolated
block-level and integration
verification

Enabled functional verification without a full golden model
Instruction decode and execution mismatches identified
Memory consistency corner cases exposed

CHALLENGE–SOLUTION–RESULT: GOLDEN REFERENCE MODEL GAP

Challenge:
Lack of a complete architectural golden reference model for near-memory AI
compute.

Solution Applied:

Hierarchical reference modeling instead of a single golden model
Instruction-level C/Python reference models for custom RISC-V
instructions
Block-level functional models for near-memory MAC operations
End-to-end memory consistency checks

Results Achieved:

01 Golden Reference Model Challenge:
Hierarchical reference modeling revealed instruction-level mismatches

02 Memory Visibility & Ordering Challenge:
Assertion-based checks exposed ordering and synchronization corner cases

03

04 System-Level Observability Challenge:
C-based SoC tests improved debug observability across compute–memory
boundaries

RESULTS: IMPACT OF VERIFICATION STRATEGIES ON LEVEL-3
CHALLENGES

Parallel Execution Challenge:
Functional coverage improved for parallel dataflow scenarios

TECHNICAL APPROACH
Verification Methodology

01 Instruction-Level Verification:
Validate custom RISC-V instruction
decode and execution
Use directed tests and reference
model comparison

03

Memory Subsystem
Verification:

Verify data consistency, visibility,
and ordering
Check correct interaction
between compute and memory

02

04Block-Level Verification:
Verify functional correctness of
systolic MAC units
Validate parallel execution and
synchronization behavior

SoC-Level Integration
Verification:

Validate interactions between
RISC-V core, accelerator, and
memory
Verify control, data flow, and
system-level correctness

Technical
viability

Availability of RISC-V
Verification Ecosystem

Compatibility with UVM-
Based Verification Flows

Assertion-Based Verification
for Memory Behavior

Scalable Verification from
Block to SoC Level

Verification
Feasibility &
Practicality

Reusable Reference Models
for AI Operations

Relevance to Emerging Edge-
AI SoC Designs

Availability of open-source RISC-V cores
and verification environments

Existing RTL and functional reference
models for MAC and vector operations

FPGA and SoC platforms supporting
accelerator prototyping and testing

Mature EDA toolchains for simulation,
assertions, and coverage

Residual Challenges and
Future Work

Scaling hierarchical reference
models to larger near-memory
systems

Managing state-space explosion
in highly parallel AI workloads

Improving functional
coverage metrics for complex
AI dataflows

Debug scalability across tightly
coupled compute–memory
interfaces

Verification of AI accelerators in edge SoCs
RISC-V based memory-centric architectures
Power-efficient accelerators for low-cost devices
Validation of near-memory compute in SSD/DRAM controllers

REFERENCES:

APPLICATIONS

1.A. Waterman, Y. Lee, D. Patterson, and K. Asanović, “The RISC-V Instruction Set Manual,
Volume I: Unprivileged ISA,” RISC-V International, 2019.

2. D. Kroening and O. Strichman, “Decision Procedures: An Algorithmic Point of View,”Springer,
2016.

3.J. Bergeron, “Writing Testbenches: Functional Verification of HDL Models,” Springer, 2nd
Edition, 2003.

4.H. Foster, A. Krolnik, and D. Lacey, “Assertion-Based Design for System-on-Chip Verification,”
Springer, 2nd Edition, 2004

