VERIFICATION
CHALLENGES
AND STRATEGIES
FOR RISC-V
BASED NEAR-
MEMORY Al

ACCELERATORS

SUBMISSION CATEGORY: ASIC / SoC
Verification, RISC-V Verification

AUTHOR NAME: VinayakVP

UNIVERSITY NAME: Vidyavardhaka College of
Engineering, Mysuru

EXECUTIVE

SUMMARY
f——

Near-memory Al

acceleration changes how

computation and memory
interact in modern SoCs.
While it reduces data
movement and power, it
introduces complex
verification challenges due
to custom RISC-V
iInstructions and parallel
execution. O

-

Near-memory Al accelerators integrated with RISC-V
processors reduce data movement but introduce
complex verification challenges.

Custom RISC-V instructions, tightly coupled memory-
compute behavior, and parallel execution make traditional
verification insufficient.

This work analyzes key verification challenges and
proposes layered verification strategies for near-
memory Al architectures.

The approach emphasizes functional correctness,
memory consistency, and coverage-driven
verification for scalable Al SoCs.

Problem statement

VERIFICATION
CHALLENGES IN NEAR-
MEMORY RISC-V Al
ARCHITECTURES

e Custom RISC-V extensions lack mature
reference models

e Near-memory computation violates
conventional memory visibility and
ordering assumptions

e Parallel dataflows introduce race
conditions and corner cases

e Functional coverage closure is challenging
in parallel Al accelerators

LEVEL 3 VERIFICATION CHALLENGES AND SOLUTIONS

O1

02

e Challenge: Lack of Golden Reference Models for Near-Memory
Compute
Solution:
e Use hierarchical reference models instead of a single golden model
¢ |[nstruction-level C/Python models for custom RISC-V instructions
e Block-level functional models for near-memory MAC units

e Challenge: Memory Visibility and Ordering Violations
Solution:
e Assertion-based verification for ordering and visibility rules
e Stress tests combining load/store operations with near-memory
compute

LEVEL 3 VERIFICATION CHALLENGES AND SOLUTIONS

03 e Challenge: Parallel Execution and Race Conditions
Solution:
e Constrained-random stimulus targeting parallel execution
e Synchronization and completion assertions

04 e Challenge: Functional Coverage Closure Difficulty
Solution:
e Coverage-driven verification targeting parallel dataflow corner cases

Verification Challenges:

WHY NEAR-MEMORY RISC-V ARCHITECTURES ARE
HARD TO VERIFY

This dlag ram illustrates the tlg ht SYSTEM UNDER VERIFICATION (SUV)

interaction between the SV CORE instructon Decoder &
. » Standard ISA

processor and memory in near- Custom Custom RISC-Y

* Control FSM

memory architectures.
While computation moves closer

to data, it also reduces | N Accslerator
R Herory + Parallel MAC Units
observability and breaks ‘ . Vector Mt

traditional assumptions, making
verification more challenging
compared to conventional SoCs. Memory Updates

(Write-back)

Verification Challenges and Solutions

VERIFICATION VIEW OF A RISC-V BASED NEAR-
MEMORY Al ACCELERATOR

This dlag ram presents a verification- Scoreboard & Result
. . Golden Reference — Checker
centric view of the system under Model (C / Python) * RTL vs Model
Comparison

verification, consisting of a RISC-V core,
custom instruction control, near-memory

Assertions & Monitors
Al accelerator, and memory. * Instruction correctness
. - . . . * Memory consistency & ordering
Verification is performed using * No race / data corruption

reference models, assertions, and
coverage monitors to validate instruction

Coverage Monitors
* I[nstruction coverage

* Memory access patterns
* Accelerator state coverage

correctness, memory consistency, and
parallel execution behavior.

VERIFICATION-RELEVANT ARCHITECTURAL FEATURES

e Custom RISC-V instructions
require instruction-level
functional verification

e Near-memory computation
impacts memory visibility and
ordering assumptions

e Parallel execution introduces
synchronization and race-
condition risks

e Modular RTL enables isolated
block-level and integration
verification

Custom RISC-V
Instruction Extensions

Near-Memory Compute
& Data Visibility

Parallel MAC Execution

Modular RTL Partitioning

Clock Gating & Pipeline
Stages

CHALLENGE-SOLUTION-RESULT: GOLDEN REFERENCE MODEL GAP

Challenge:

Lack of a complete architectural golden reference model for near-memory Al
compute.

Solution Applied:

e Hierarchical reference modeling instead of a single golden model

e Instruction-level C/Python reference models for custom RISC-V
instructions

e Block-level functional models for near-memory MAC operations

e End-to-end memory consistency checks

Results Achieved:

e Enabled functional verification without a full golden model
e Instruction decode and execution mismatches identified
e Memory consistency corner cases exposed

O

RESULTS: IMPACT OF VERIFICATION STRATEGIES ON LEVEL-3
CHALLENGES O

Golden Reference Model Challenge:
Hierarchical reference modeling revealed instruction-level mismatches

Memory Visibility & Ordering Challenge:
Assertion-based checks exposed ordering and synchronization corner cases

Parallel Execution Challenge:
Functional coverage improved for parallel dataflow scenarios

System-Level Observability Challenge:
C-based SoC tests improved debug observability across compute-memory
boundaries

TECHNICAL APPROACH

Verification Methodology

O1 Instruction-Level Verification: (2 Memory Subsystem

e Validate custom RISC-V instruction Verification:
decode and execution

e Use directed tests and reference
model comparison

e Verify data consistency, visibility,
and ordering

e Check correct interaction
between compute and memory

O3 Block-Level Verification: 04 SoC-Level Integration

e Verify functional correctness of Verification:
systolic MAC units

e Validate parallel execution and
synchronization behavior

e Validate interactions between
RISC-V core, accelerator, and
memory

e Verify control, data flow, and
system-level correctness

Verification
Feasibility &
Practicality

Technical
viability

Availability of RISC-V A Compatibility with UVM-
Verification Ecosystem Based Verification Flows

Reusable Reference Models A Scalable Verification from
for Al Operations Block to SoC Level

for Memory Behavior Al SoC Designs

(Assertion-Based Verification ST Relevance to Emerging Edge-

Residual Challenges and

Future Work

@ Availability of open-source RISC-V cores
and verification environments

@ Existing RTL and functional reference
models for MAC and vector operations

@ FPGA and SoC platforms supporting
accelerator prototyping and testing

@ Mature EDA toolchains for simulation,
assertions, and coverage

Scaling hierarchical reference
models to larger near-memory
systems

Managing state-space explosion
in highly parallel Al workloads

Improving functional
coverage metrics for complex
Al dataflows

Debug scalability across tightly
coupled compute-memory
interfaces

REFERENCES:

1.A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, “The RISC-V Instruction Set Manual,
Volume I: Unprivileged ISA,” RISC-V International, 2019.

2. D. Kroening and O. Strichman, “Decision Procedures: An Algorithmic Point of View,”Springer,
2016.

3.J). Bergeron, “Writing Testbenches: Functional Verification of HDL Models,” Springer, 2nd
Edition, 2003.

4.H. Foster, A. Krolnik, and D. Lacey, “Assertion-Based Design for System-on-Chip Verification,”
Springer, 2nd Edition, 2004

APPLICATIONS

e Verification of Al accelerators in edge SoCs

e RISC-V based memory-centric architectures

e Power-efficient accelerators for low-cost devices

e Validation of near-memory compute in SSD/DRAM controllers

