
MileSan
Detecting Exploitable Microarchitectural Leakage via
Differential Hardware-Software Taint Tracking

Tobias Kovats, Flavien Solt*, Katharina Ceesay-Seitz, Kaveh Razavi
Presented at CCS’25

ETH Zurich, *UC Berkeley



MileSan

detects arbitrary
exploitable leakage in RTL

1



MileSan

detects arbitrary
exploitable leakage in RTL

RandOS

generates random
operating systems

1



MileSan

detects arbitrary
exploitable leakage in RTL

RandOS

generates random
operating systems

1



MileSan

detects arbitrary
exploitable leakage in RTL

RandOS

generates random
operating systems

1



MileSan

detects arbitrary
exploitable leakage in RTL

RandOS

generates random
operating systems

1



MileSan

detects arbitrary
exploitable leakage in RTL

RandOS

generates random
operating systems

1



Problem. Existing pre-silicon microarchitectural fuzzers
overfit to known vulnerabilities.
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Obs. 1. Test case generation overfits to known
vulnerabilities.
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Obs. 2. Leakage detection overfits to known vulnerabilities.
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We need mechanisms that generalize in

Software and Hardware

to arbitrary vulnerabilities.
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The Microarchitectural leakage Sanitizer

RQ. 1. How can we compute the architectural information
flows in hardware?
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Architectural information flows in hardware

Insight 1. We can compute architectural information flows
in hardware using software IFT.
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The Microarchitectural leakage Sanitizer

RQ. 2. How can we compute microarchitectural information
flows in hardware?
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CellIFT SEC’22

Insight 2. We can use existing methods for RTL taint
tracking.

13



The Microarchitectural leakage Sanitizer

RQ. 3. How can we detect leakage?
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Arch. and Microarch. Info Flows in hardware

CVE-2025-29340

Insight 3. Exploitable leakage is a microarchitectural
information flow to the PC!
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RandOS

RQ. 4. How should test cases behave?
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privileges
address spaces
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Implementation

MileSan. Hardware IFT: Using CellIFT and
HybridIFT. Software IFT: Approx. 15k LoC
Python.
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Implementation

MileSan. Hardware IFT: Using CellIFT and
HybridIFT. Software IFT: Approx. 15k LoC
Python.

RandOS. Approx. 20k LoC Python.

Tested CPUs. Kronos, Rocket, BOOM,
CVA6, OpenC910.
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Evaluation

Q1. How fast can MileSan and RandOS find
known vulnerabilities? 4.5× faster.

Q2. Can MileSan verify PoCs from prior work?
Prior work reports false positives!

Q3. Can MileSan and RandOS find new vul-
nerabilities?
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Can MileSan and Randos find new vulns.?
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Can MileSan and Randos find new vulns.?

Leaking 1Mbps from kernel to user at 2GHz on BOOM

CVE-2025-29343 End-to-end exploit
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Conclusion

MileSan. Based on fundamental properties of
information flows. Works for arbitrary programs
and leakage.
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MileSan. Based on fundamental properties of
information flows. Works for arbitrary programs
and leakage.

RandOS. Generates random operating sys-
tems. Tests all architectural isolation boundaries.

MileSan+RandOS. Found 19 new
vulnerabilities on BOOM, CVA6 and OpenC910.

more info + source code
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