MileSan

Detecting Exploitable Microarchitectural Leakage via
Differential Hardware-Software Taint Tracking

Tobias Kovats, Flavien Solt*, Katharina Ceesay-Seitz, Kaveh Razavi

Presented at CCS’25

ETH Zurich, *UC Berkeley

conSst ETHzirich

MileSan

detects arbitrary
exploitable leakage in RTL

MileSan RandOS

[~ <] N

detects arbitrary generates random
exploitable leakage in RTL operating systems

Overfitting in software for triggering leakage

Overfitting in software for triggering leakage

= ©

Overfitting in software for triggering leakage

Overfitting in software for triggering leakage

Al

TRAINING_GADGET

=P

Overfitting in software for triggering leakage

Al

TRAINING_GADGET

LEAKING_GADGET

Overfitting in software for triggering leakage

Al

TRAINING_GADGET
LEAKING_GADGET 1)

Overfitting in software for triggering leakage

Al

TRAINING_GADGET
LEAKING_GADGET

Overfitting in software for triggering leakage

Al

TRAINING_GADGET
LEAKING_GADGET

Overfitting in software for triggering leakage

Al

TRAINING_GADGET
LEAKING_GADGET

Overfitting in software for triggering leakage

Al

TRAINING_GADGET)
LEAKING_GADGET

Overfitting in software for triggering leakage

@

WhisperFuzz SEC’24

IntroSpectre ISCA’21
Phantom Trails SEC’25

¢’ SpecDoctor CCS’22

Specure DAC’24

(S48

Overfitting in software for triggering leakage

7 WhisperFuzz SEC’24

IntroSpectre ISCA’21
Phantom Trails SEC’25
7 SpecDoctor CCS’22

Specure DAC’24

(S48

Overfitting in software for triggering leakage

WhisperFuzz SEC’24

IntroSpectre ISCA’21
Phantom Trails SEC’25

$ Specure DAC’24

Overfitting in software for triggering leakage

'
P

7 WhisperFuzz SEC’24

IntroSpectre ISCA’21
Phantom Trails SEC’25
7 SpecDoctor CCS’22

$ Specure DAC’24

(S48

Overfitting in software for triggering leakage

G WhisperFuzz SEC’24

IntroSpectre ISCA’21
Phantom Trails SEC’25

Overfitting in software for triggering leakage

pe

WhisperFuzz SEC’24
IntroSpectre ISCA’21

% Specure DAC’24

Obs. 1. Test case generation overfits to known
vulnerabilities.

(S48

Overfitting in hardware for detecting leakage

CPU

PC

BPU

TLB

Overfitting in hardware for detecting leakage

Overfitting in hardware for detecting leakage

Overfitting in hardware for detecting leakage

Obs. 2. Leakage detection overfits to known vulnerabilities.

We have mechanisms that overfit in

We have mechanisms that overfit in

Software

We have mechanisms that overfit in

Software and Hardware

i

Mo
a

o~

We have mechanisms that overfit in

Software and Hardware

to known vulnerabilities.

We need mechanisms that generalize in

We need mechanisms that generalize in

Software

We need mechanisms that generalize in

Software and Hardware

We need mechanisms that generalize in

Software and Hardware

to arbitrary vulnerabilities.

The Microarchitectural leakage Sanitizer

>

Architectural Information Flows.

The Microarchitectural leakage Sanitizer

S
-

Architectural Information Flows.

The Microarchitectural leakage Sanitizer

Microarchitectural Information Flows. ‘
=
CPU
—]
< | -

>

Architectural Information Flows.

The Microarchitectural leakage Sanitizer

RQ. 1. How can we compute the architectural information
flows in hardware?

10

info flows in software

SOFTWARE MEMORY

A

info flows in software

SOFTWARE MEMORY

A

info flows in software

SOFTWARE MEMORY

A

info flows in software

SOFTWARE MEMORY

A

11

info flows in software

SOFTWARE MEMORY

A

information flows in hardware

MEMORY CPU

|7 F @

TLB Lsul |ALU

12

information flows in hardware

MEMORY

==

ALU

12

information flows in hardware

MEMORY

o | B

12

information flows in hardware

MEMORY

——]

12

information flows in hardware

CPU
= =
ALU

MEMORY

Insight 1. We can compute architectural information flows
in hardware using software IFT.

12

The Microarchitectural leakage Sanitizer

RQ. 2. How can we compute microarchitectural information
flows in hardware?

13

The Microarchitectural leakage Sanitizer

CelllFT SEC’22

_)|’ - or %
! ')" - \IF:l: - "
! - \ 4 S

and” and
VIFT ‘. VIFT
\ A

13

The Microarchitectural leakage Sanitizer

CelllFT SEC’22

Y AY?

rd N - -

)|’ or :|
IR

- - -

Insight 2. We can use ex1st1ng methods for RTL taint
tracking.

‘ﬁ‘ ‘ZTH‘IFT r\‘IFT'v
A

B' A" gt

13

The Microarchitectural leakage Sanitizer

RQ. 3. How can we detect leakage?

14

Info Flows in hardware

MEMORY

-
o re] |
ALU

Info Flows in hardware

MEMORY CPU

sb to, -1338(a0)

— @ ALU

Hiy

Info Flows in hardware

MEMORY

3
I_ B PC
sb to, -1338(a0) = @ g\

—— ALU

Info Flows in hardware

MEMORY

e —

B
r

sh t0, -754(t2)

Info Flows in hardware

CPU =
.

]

ALU

CVE-2025-29340 MEMORY

Insight 3. Exploitable leakage is a microarchitectural
information flow to the PC!

MileSan and RandOS

Microarchitectural Information Flows
Computed with hardware IFT.

CPU
-]

@ IEC . -

B -

>

Architectural Information Flows.
Computed with software IFT.

16

MileSan and RandOS

Microarchitectural Information Flows
Computed with hardware IFT.

CPU
-]

@ IEC .

Gk,
F»

Architectural Information Flows.
Computed with software IFT.

RandOS .

16

RandOS

RQ. 4. How should test cases behave?

17

RandOS: Generating programs

BOOT

18

RandOS: Generating programs

BOOT BBy

18

RandOS: Generating programs

BOOT BBy BB,

18

RandOS: Generating programs

CERR

18

RandOS: Generating programs

-E R R

18

RandOS: Generating programs

- ¥

18

RandOS: Generating programs

poongy v g g

privileges

19

RandOS: Generating programs

privileges
ZS8 address spaces

19

RandOS: Traversing isolation boundaries

20

RandOS: Traversing isolation boundaries

Lsu| |ALU

20

RandOS: Traversing isolation boundaries

ALU

20

RandOS: Traversing isolation boundaries

%
zo@
Z
CPU

[re]]
i e cross-
st (AU 6&

privilege

M

4

20

RandOS: Traversing isolation boundaries

- f-N -8 K.

CPU a
: == (’? cross-privilege

ALU gcross-add r.

space

20

RandOS: Traversing isolation boundaries

CPU ‘ (’? cross-privilege

-
- e cross-addr. space
ALU % within priv.+
2’ addr. space

20

RandOS: Traversing isolation boundaries

\

CPU ‘ ‘? cross-privilege

—]]
B 6 cross-addr. space
,// within priv.+ addr. space
ALU 2 crg;s priv.+
addr. space

20

RandOS: Traversing isolation boundaries

(’? cross-privilege

e cross-addr. space

9 within priv.+ addr. space

& cross priv.+ addr. space

20

Implementation
MileSan. Hardware IFT: Using CellIFT and ‘

HybridIFT. Software IFT: Approx. 15k LoC > - |
Python.

21

Implementation

Implementation

MileSan. Hardware IFT: Using CellIFT and ‘
> = |

HybridIFT. Software IFT: Approx. 15k LoC
Python.

Tested CPUs. Kronos, Rocket, BOOM,
CVAG6, OpenC910.

\/
N

Evaluation

Evaluation

Q1. How fast can MileSan and RandOS find
known vulnerabilities? 4.5x faster.

Q2. Can MileSan verify PoCs from prior work?
Prior work reports false positives!

Can MileSan and Randos find new vulns.?

|| Vulnerability DUT Covert Channel ”
Spectre-V2-TLB BOOM TLB
Spectre-V4-TLB BOOM TLB
Spectre-RSB-TLB ~ BOOM TLB
Trans. Meltdown BOOM TLB
cp-Spectre V2 BOOM TLB
Spectre-SLS CVA6 TLB
cp-Spectre-SLS CVA6 TLB
MDS CVA6 TLB
Trans. MDS CVA6 TLB

Spectre-V1 OpenC910 DCACHE

Spectre-V1-TLB ~ OpenC910 TLB
div’ OpenC910 DIV
divu® OpenC910 DIV
divw® OpenC910 DIV
divuw® OpenC910 DIV
rem’ OpenC910 DIV
remu’ OpenC910 DIV
remw’ OpenC910 DIV
remuw’ OpenC910 DIV

N

(2

Cross-
privilege

24

Can MileSan and Randos find new vulns.?

|| Vulnerability DUT Covert Channel ”
Spectre-V2-TLB BOOM TLB
Spectre-V4-TLB BOOM TLB
Spectre-RSB-TLB ~ BOOM TLB
Trans. Meltdown BOOM TLB
cp-Spectre V2 BOOM TLB
Spectre-SLS CVA6 TLB
cp-Spectre-SLS CVA6 TLB
MDS CVA6 TLB
Trans. MDS CVA6 TLB

Spectre-V1 OpenC910 DCACHE

Spectre-V1-TLB ~ OpenC910 TLB
div’ OpenC910 DIV
divu® OpenC910 DIV
divw® OpenC910 DIV
divuw® OpenC910 DIV
rem’ OpenC910 DIV
remu’ OpenC910 DIV
remw’ OpenC910 DIV
remuw’ OpenC910 DIV

VN

€

Cross-
privilege

24

Can MileSan and Randos find new vulns.?

|| Vulnerability DUT Covert Channel ”
Spectre-V2-TLB BOOM TLB
Spectre-V4-TLB BOOM TLB
Spectre-RSB-TLB ~ BOOM TLB
Trans. Meltdown BOOM TLB
cp-Spectre V2 BOOM TLB
Spectre-SLS CVA6 TLB
cp-Spectre-SLS CVA6 TLB
MDS CVA6 TLB
Trans. MDS CVA6 TLB

Spectre-V1 OpenC910 DCACHE

Spectre-V1-TLB ~ OpenC910 TLB
div’ OpenC910 DIV
divu® OpenC910 DIV
divw® OpenC910 DIV
divuw® OpenC910 DIV
rem’ OpenC910 DIV
remu’ OpenC910 DIV
remw’ OpenC910 DIV
remuw’ OpenC910 DIV

VN

€

Cross-
privilege

24

Can MileSan and Randos find new vulns.?

Leaking 1Mbps from kernel to user at 2GHz on BOOM

CVE-2025-29343 End-to-end exploit

la ra, secret
la a2, buffer

- e

Evict the TLB, delay t@ results.
QEAI/IE (RO E3pE0n(beqz t@, correct_target
0x28780: rem a2,a2,tp 2 e
D CRUD) GO 1d a0, o(ra) # Access secret.
Branch below mispredicted taken andi a@, a@, 1 # Mask out a single bit.
slli a0, a0, 12 # Shift secret bit by page offset.
#
#

e @ o oa

@x287d0: blt gp,ra,0x28e00

Meltdown gadget executed transiently 1 add a2, a2, a0 Add secret bit to buffer.

e zss oo I N N 55) u 1d a2, 0(a2) Encode the secret bit in the TLB.
0x28e04: 1h s1,-1010(sp) 12 correct_target:

**

Resume at correct path.

Can MileSan and Randos find new vulns.?

|| Vulnerability DUT Covert Channel ”
Spectre-V2-TLB BOOM TLB
Spectre-V4-TLB BOOM TLB
Spectre-RSB-TLB BOOM TLB
Trans. Meltdown BOOM TLB @
cp-Spectre V2 BOOM TLB @ @ Cross-
Spectre-SLS CVA6 TLB gt
cp-Spectre-SLS CVA6 TLB @ privi Iege
MDS CVA6 TLB @
Trans. MDS CVA6 TLB @ cross-addr.
Spectre-V1 OpenC910 DCACHE (2] space
Spectre-V1-TLB ~ OpenC910 TLB
div’ OpenC910 DIV
divu® OpenC910 DIV
divw® OpenC910 DIV
divuw® OpenC910 DIV
rem’ OpenC910 DIV
remu’ OpenC910 DIV
remw’ OpenC910 DIV
remuw’ OpenC910 DIV

26

Can MileSan and Randos find new vulns.?

|| Vulnerability DUT Covert Channel ”

Spectre-V2-TLB BOOM TLB
Spectre-V4-TLB BOOM TLB
Spectre-RSB-TLB ~ BOOM TLB
Trans. Meltdown BOOM TLB
cp-Spectre V2 BOOM TLB
Spectre-SLS CVA6 TLB
cp-Spectre-SLS CVA6 TLB
MDS CVA6 TLB
Trans. MDS CVA6 TLB

Spectre-V1 OpenC910 DCACHE
Spectre-V1-TLB ~ OpenC910 TLB
div’ OpenC910 DIV
divu® OpenC910 DIV
divw? OpenC910 DIV
divuw® OpenC910 DIV
rem’ OpenC910 DIV
remu’ OpenC910 DIV
remw’ OpenC910 DIV
remuw’ OpenC910 DIV

VN

000

000000000

Cross-
privilege

cross-addr.
space

within priv.+
addr. space

26

Conclusion
MileSan. Based on fundamental properties of ‘

information flows. Works for arbitrary programs =T

and leakage.

27

Conclusion

Conclusion

MileSan+RandOS. Found 19 new
vulnerabilities on BOOM, CVA6 and OpenC910.

27

Conclusion

MileSan. Based on fundamental properties of
information flows. Works for arbitrary programs

and leakage.

MileSan+RandOS. Found 19 new
vulnerabilities on BOOM, CVA6 and OpenC910.

27

