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Obs. 1. Test case generation overfits to known
vulnerabilities.
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Obs. 2. Leakage detection overfits to known vulnerabilities.
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The Microarchitectural leakage Sanitizer

RQ. 1. How can we compute the architectural information
flows in hardware?
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Insight 1. We can compute architectural information flows
in hardware using software IFT.
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RQ. 2. How can we compute microarchitectural information
flows in hardware?
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The Microarchitectural leakage Sanitizer

RQ. 3. How can we detect leakage?
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Info Flows in hardware
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Insight 3. Exploitable leakage is a microarchitectural
information flow to the PC!
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Microarchitectural Information Flows
Computed with hardware IFT.
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Architectural Information Flows.
Computed with software IFT.
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RandOS

RQ. 4. How should test cases behave?
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Implementation
MileSan. Hardware IFT: Using CellIFT and ‘

HybridIFT. Software IFT: Approx. 15k LoC > - |
Python.
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Implementation

MileSan. Hardware IFT: Using CellIFT and ‘
> = |

HybridIFT. Software IFT: Approx. 15k LoC
Python.

Tested CPUs. Kronos, Rocket, BOOM,
CVAG6, OpenC910.
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Evaluation

Q1. How fast can MileSan and RandOS find
known vulnerabilities? 4.5x faster.

Q2. Can MileSan verify PoCs from prior work?
Prior work reports false positives!



Can MileSan and Randos find new vulns.?

|| Vulnerability DUT Covert Channel ”
Spectre-V2-TLB BOOM TLB
Spectre-V4-TLB BOOM TLB
Spectre-RSB-TLB ~ BOOM TLB
Trans. Meltdown BOOM TLB
cp-Spectre V2 BOOM TLB
Spectre-SLS CVA6 TLB
cp-Spectre-SLS CVA6 TLB
MDS CVA6 TLB
Trans. MDS CVA6 TLB

Spectre-V1 OpenC910 DCACHE

Spectre-V1-TLB ~ OpenC910 TLB
div’ OpenC910 DIV
divu® OpenC910 DIV
divw® OpenC910 DIV
divuw® OpenC910 DIV
rem’ OpenC910 DIV
remu’ OpenC910 DIV
remw’ OpenC910 DIV
remuw’ OpenC910 DIV
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Can MileSan and Randos find new vulns.?

Leaking 1Mbps from kernel to user at 2GHz on BOOM

CVE-2025-29343 End-to-end exploit

la ra, secret
la a2, buffer

- e

# Evict the TLB, delay t@ results.
QEAI/IE (RO E3pE0n( beqz t@, correct_target
0x28780: rem a2,a2,tp 2 e
D CRUD) GO 1d a0, o(ra) # Access secret.
# Branch below mispredicted taken andi a@, a@, 1 # Mask out a single bit.
slli a0, a0, 12 # Shift secret bit by page offset.
#
#

e @ o oa

@x287d0: blt gp,ra,0x28e00

# Meltdown gadget executed transiently 1 add a2, a2, a0 Add secret bit to buffer.

e zss oo I N N 55 ) u 1d a2, 0(a2) Encode the secret bit in the TLB.
0x28e04: 1h s1,-1010(sp) 12 correct_target:

**

Resume at correct path.




Can MileSan and Randos find new vulns.?

|| Vulnerability DUT Covert Channel ”
Spectre-V2-TLB BOOM TLB
Spectre-V4-TLB BOOM TLB
Spectre-RSB-TLB BOOM TLB
Trans. Meltdown BOOM TLB @
cp-Spectre V2 BOOM TLB @ @ Cross-
Spectre-SLS CVA6 TLB gt
cp-Spectre-SLS CVA6 TLB @ privi Iege
MDS CVA6 TLB @
Trans. MDS CVA6 TLB @ cross-addr.
Spectre-V1 OpenC910 DCACHE (2] space
Spectre-V1-TLB ~ OpenC910 TLB
div’ OpenC910 DIV
divu® OpenC910 DIV
divw® OpenC910 DIV
divuw® OpenC910 DIV
rem’ OpenC910 DIV
remu’ OpenC910 DIV
remw’ OpenC910 DIV
remuw’ OpenC910 DIV
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Conclusion
MileSan. Based on fundamental properties of ‘

information flows. Works for arbitrary programs =T

and leakage.
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MileSan+RandOS. Found 19 new
vulnerabilities on BOOM, CVA6 and OpenC910.
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