
MileSan
Detecting Exploitable Microarchitectural Leakage via
Differential Hardware-Software Taint Tracking

Tobias Kovats, Flavien Solt*, Katharina Ceesay-Seitz, Kaveh Razavi
Presented at CCS’25

ETH Zurich, *UC Berkeley



MileSan

detects arbitrary
exploitable leakage in RTL

1



MileSan

detects arbitrary
exploitable leakage in RTL

RandOS

generates random
operating systems

1



MileSan

detects arbitrary
exploitable leakage in RTL

RandOS

generates random
operating systems

1



MileSan

detects arbitrary
exploitable leakage in RTL

RandOS

generates random
operating systems

1



MileSan

detects arbitrary
exploitable leakage in RTL

RandOS

generates random
operating systems

1



MileSan

detects arbitrary
exploitable leakage in RTL

RandOS

generates random
operating systems

1



Problem. Existing pre-silicon microarchitectural fuzzers
overfit to known vulnerabilities.

2



Overfitting in software for triggering leakage

3



Overfitting in software for triggering leakage

3



Overfitting in software for triggering leakage

3



Overfitting in software for triggering leakage

4



Overfitting in software for triggering leakage

4



Overfitting in software for triggering leakage

4



Overfitting in software for triggering leakage

4



Overfitting in software for triggering leakage

4



Overfitting in software for triggering leakage

4



Overfitting in software for triggering leakage

4



Overfitting in software for triggering leakage

WhisperFuzz SEC’24

Specure DAC’24

IntroSpectre ISCA’21
Phantom Trails SEC’25
SpecDoctor CCS’22

5



Overfitting in software for triggering leakage

WhisperFuzz SEC’24

Specure DAC’24

IntroSpectre ISCA’21
Phantom Trails SEC’25
SpecDoctor CCS’22

5



Overfitting in software for triggering leakage

WhisperFuzz SEC’24

Specure DAC’24

IntroSpectre ISCA’21
Phantom Trails SEC’25
SpecDoctor CCS’22

5



Overfitting in software for triggering leakage

WhisperFuzz SEC’24

Specure DAC’24

IntroSpectre ISCA’21
Phantom Trails SEC’25
SpecDoctor CCS’22

5



Overfitting in software for triggering leakage

?

?

?

?

?

? ??

WhisperFuzz SEC’24

Specure DAC’24

IntroSpectre ISCA’21
Phantom Trails SEC’25
SpecDoctor CCS’22

5



Overfitting in software for triggering leakage

?

?

?

?

?

? ??

WhisperFuzz SEC’24

Specure DAC’24

IntroSpectre ISCA’21
Phantom Trails SEC’25
SpecDoctor CCS’22

Obs. 1. Test case generation overfits to known
vulnerabilities.

5



Overfitting in hardware for detecting leakage

6



Overfitting in hardware for detecting leakage

?
?

?

?

?

?

? ?

6



Overfitting in hardware for detecting leakage

?
?

?

?

?

?

? ?
?
? ?

6



Overfitting in hardware for detecting leakage

?
?

?

?

?

?

? ?
?
? ?

Obs. 2. Leakage detection overfits to known vulnerabilities.

6



We have mechanisms that overfit in

7



We have mechanisms that overfit in

Software

?

?
?

?

?

? ??

7



We have mechanisms that overfit in

Software

?

?
?

?

?

? ??

and Hardware

?
?

?
?

?
?

? ?

? ? ?

7



We have mechanisms that overfit in

Software

?

?
?

?

?

? ??

and Hardware

?
?

?
?

?
?

? ?

? ? ?

to known vulnerabilities.
7



We need mechanisms that generalize in

8



We need mechanisms that generalize in

Software

8



We need mechanisms that generalize in

Software and Hardware

8



We need mechanisms that generalize in

Software and Hardware

to arbitrary vulnerabilities.
8



The Microarchitectural leakage Sanitizer

9



The Microarchitectural leakage Sanitizer

9



The Microarchitectural leakage Sanitizer

9



The Microarchitectural leakage Sanitizer

RQ. 1. How can we compute the architectural information
flows in hardware?

10



Architectural info flows in software

11



Architectural info flows in software

11



Architectural info flows in software

11



Architectural info flows in software

11



Architectural info flows in software

11



Architectural information flows in hardware

12



Architectural information flows in hardware

12



Architectural information flows in hardware

12



Architectural information flows in hardware

12



Architectural information flows in hardware

Insight 1. We can compute architectural information flows
in hardware using software IFT.

12



The Microarchitectural leakage Sanitizer

RQ. 2. How can we compute microarchitectural information
flows in hardware?

13



The Microarchitectural leakage Sanitizer

CellIFT SEC’22

13



The Microarchitectural leakage Sanitizer

CellIFT SEC’22

Insight 2. We can use existing methods for RTL taint
tracking.

13



The Microarchitectural leakage Sanitizer

RQ. 3. How can we detect leakage?

14



Arch. and Microarch. Info Flows in hardware

15



Arch. and Microarch. Info Flows in hardware

15



Arch. and Microarch. Info Flows in hardware

15



Arch. and Microarch. Info Flows in hardware

15



Arch. and Microarch. Info Flows in hardware

CVE-2025-29340

Insight 3. Exploitable leakage is a microarchitectural
information flow to the PC!

15



MileSan and RandOS

16



MileSan and RandOS

RandOS

16



RandOS

RQ. 4. How should test cases behave?

17



RandOS: Generating programs

18



RandOS: Generating programs

18



RandOS: Generating programs

18



RandOS: Generating programs

18



RandOS: Generating programs

18



RandOS: Generating programs

18



RandOS: Generating programs

privileges

19



RandOS: Generating programs

privileges
address spaces

19



RandOS: Traversing isolation boundaries

20



RandOS: Traversing isolation boundaries

20



RandOS: Traversing isolation boundaries

20



RandOS: Traversing isolation boundaries

cross-
privilege1

20



RandOS: Traversing isolation boundaries

cross-addr. 
space2

cross-privilege1

20



RandOS: Traversing isolation boundaries

cross-addr. space2

cross-privilege1

within priv.+ 
addr. space3

20



RandOS: Traversing isolation boundaries

cross-addr. space2

cross-privilege1

cross priv.+ 
addr. space4

within priv.+ addr. space3

20



RandOS: Traversing isolation boundaries

cross-addr. space2

cross-privilege1

cross priv.+ addr. space4

within priv.+ addr. space3

20



Implementation

MileSan. Hardware IFT: Using CellIFT and
HybridIFT. Software IFT: Approx. 15k LoC
Python.

21



Implementation

MileSan. Hardware IFT: Using CellIFT and
HybridIFT. Software IFT: Approx. 15k LoC
Python.

RandOS. Approx. 20k LoC Python.

21



Implementation

MileSan. Hardware IFT: Using CellIFT and
HybridIFT. Software IFT: Approx. 15k LoC
Python.

RandOS. Approx. 20k LoC Python.

Tested CPUs. Kronos, Rocket, BOOM,
CVA6, OpenC910.

21



Evaluation

Q1. How fast can MileSan and RandOS find
known vulnerabilities?

22



Evaluation

Q1. How fast can MileSan and RandOS find
known vulnerabilities?

Q2. Can MileSan verify PoCs from prior work?

22



Evaluation

Q1. How fast can MileSan and RandOS find
known vulnerabilities?

Q2. Can MileSan verify PoCs from prior work?

Q3. Can MileSan and RandOS find new vul-
nerabilities?

22



Evaluation

Q1. How fast can MileSan and RandOS find
known vulnerabilities? 4.5× faster.

Q2. Can MileSan verify PoCs from prior work?
Prior work reports false positives!

Q3. Can MileSan and RandOS find new vul-
nerabilities?

23



Can MileSan and Randos find new vulns.?

cross-
privilege1

1

1

1

1

1

24



Can MileSan and Randos find new vulns.?

cross-
privilege1

1

1

1

1

1

24



Can MileSan and Randos find new vulns.?

cross-
privilege1

1

1

1

1

1

24



Can MileSan and Randos find new vulns.?

Leaking 1Mbps from kernel to user at 2GHz on BOOM

CVE-2025-29343 End-to-end exploit

25



Can MileSan and Randos find new vulns.?

cross-
privilege1

cross-addr.
 space2

1

1

1

1

2

1

26



Can MileSan and Randos find new vulns.?

cross-
privilege1

within priv.+
 addr. space3

cross-addr.
 space2

1

1

1

1

2

1

3

3

3

3

3

3

3

3

3

3

3

3

26



Conclusion

MileSan. Based on fundamental properties of
information flows. Works for arbitrary programs
and leakage.

27



Conclusion

MileSan. Based on fundamental properties of
information flows. Works for arbitrary programs
and leakage.

RandOS. Generates random operating sys-
tems. Tests all architectural isolation boundaries.

27



Conclusion

MileSan. Based on fundamental properties of
information flows. Works for arbitrary programs
and leakage.

RandOS. Generates random operating sys-
tems. Tests all architectural isolation boundaries.

MileSan+RandOS. Found 19 new
vulnerabilities on BOOM, CVA6 and OpenC910.

27



Conclusion

MileSan. Based on fundamental properties of
information flows. Works for arbitrary programs
and leakage.

RandOS. Generates random operating sys-
tems. Tests all architectural isolation boundaries.

MileSan+RandOS. Found 19 new
vulnerabilities on BOOM, CVA6 and OpenC910.

more info + source code

27


