

VIETNAM NATIONAL UNIVERSITY HCMC
UNIVERSITY OF INFORMATION TECHNOLOGY

Presenter: Dr. Minh Son NGUYEN

01 HAN THUYEN ST., QUARTER 34, LINH XUAN WARD, HCMC, VETNAM
+84-8 3725 2002 Ext: 115, 152 | + 84-8 3725 2148 | www.uit.edu.vn | info@uit.edu.vn

LEARNER

90.000 Undergraduates
9.000 Graduates

HUMAN RESOURCE

6.500 Faculty & staff

TRAINING

136 Bachelor programs
140 Master programs
90 Doctoral programs

RESEARCH

93 Laboratories
(13 Key laboratories)
#1 Inter. publication
in Vietnam (Scopus 2024)

VNUHCM – University of Information Technology

Founding year: 2006

Field of Training:
Information and Communication Technology

A member of prestigious VNU-HCM

Vision Become a prestigious university in Information and Communications Technology (ICT) and other related fields in the Asian region.

Number of **Employees**

Update until Oct 2025

95

Professors/Ph.D Lecturers

152

M.Sc. Lecturers

Lecturers are alumni from prestigious universities in developed countries such as the UK, France, the United States and Japan, etc.

[List of Lecturers](#)

Number of **Students**

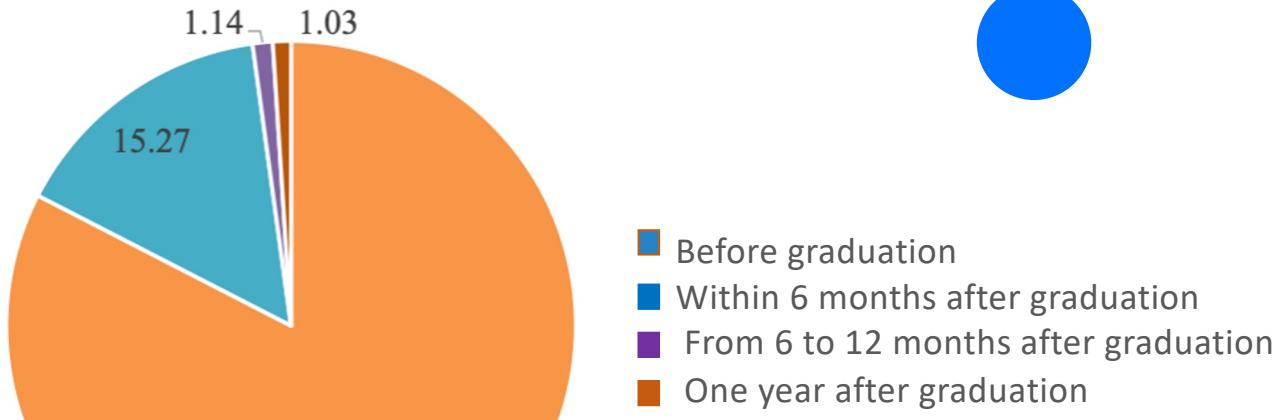
Update until Oct 2025

Specialized & Exclusively in IT and Computer Science majors.

Student enrollment score

Major	2022	2023	2024
E-Commerce	27,05	25,8	26,12
Data Science	26,65	27,05	27,5
Computer Science	27,1	26,9	27,3
Computer Net. and Com.	26,3	25,4	25,7
Software Engineering	28,05	26,9	26,85
Information System	26,7	26,2	26,25
Computer Engineering	26,55	25,6	26,25
Artificial Intelligent	28	27,8	28,3
Information Technology	27,9	26,9	27,1
Information Security	26,95	26,3	26,77
IC Design			26,5

10.868


Enthusiastic
Undergraduate

550

Professional
Graduate

Student Employment Rate

INTRODUCTION TO FCE

DR. MINH SƠN NGUYỄN

FACULTY DEAN OF COMPUTER ENGINEERING

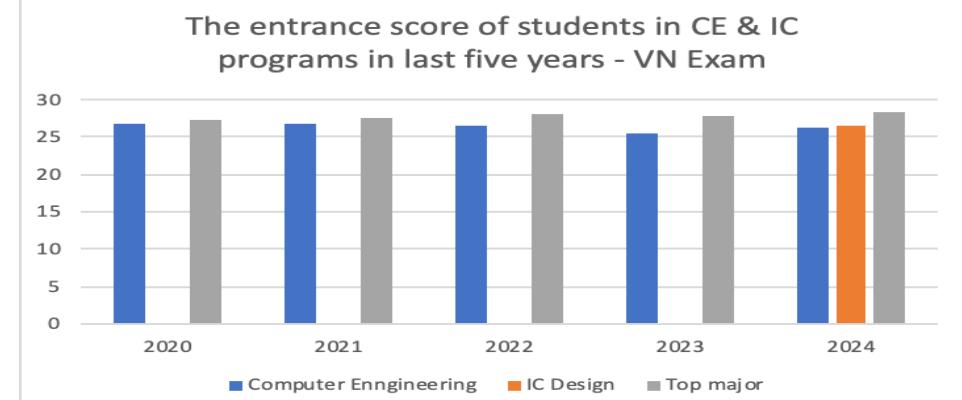
HEAD of ASICLAB

UIT, Dec 16 2025

TS. Nguyễn Minh Sơn

Trưởng Khoa

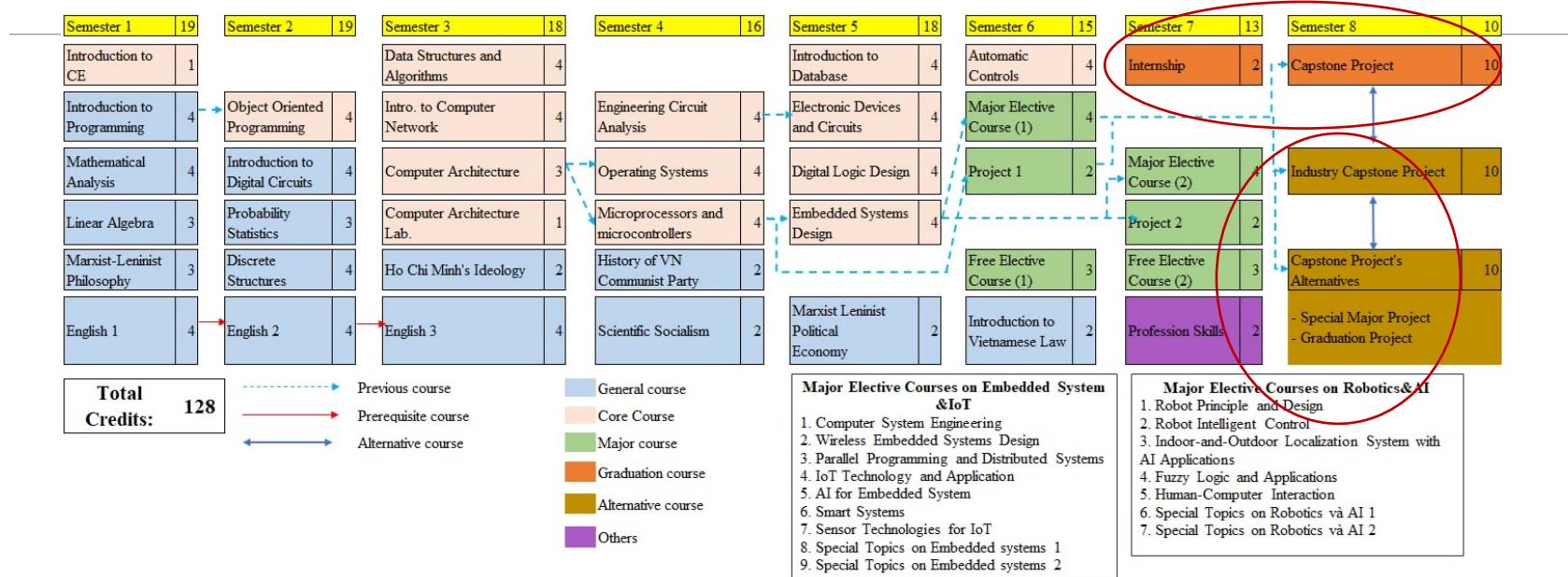
Tốt nghiệp ngành Kỹ thuật Máy tính, Trường Đại học
Bách Khoa, ĐHQG-HCM. Ông được cấp bằng Tiến sĩ
ngành Electrical Engineering tại Đại học Ulsan, Hàn
Quốc.


Email: sonnm@uit.edu.vn

COMPUTER ENGINEERING

NUMBER OF STUDENTS 2025

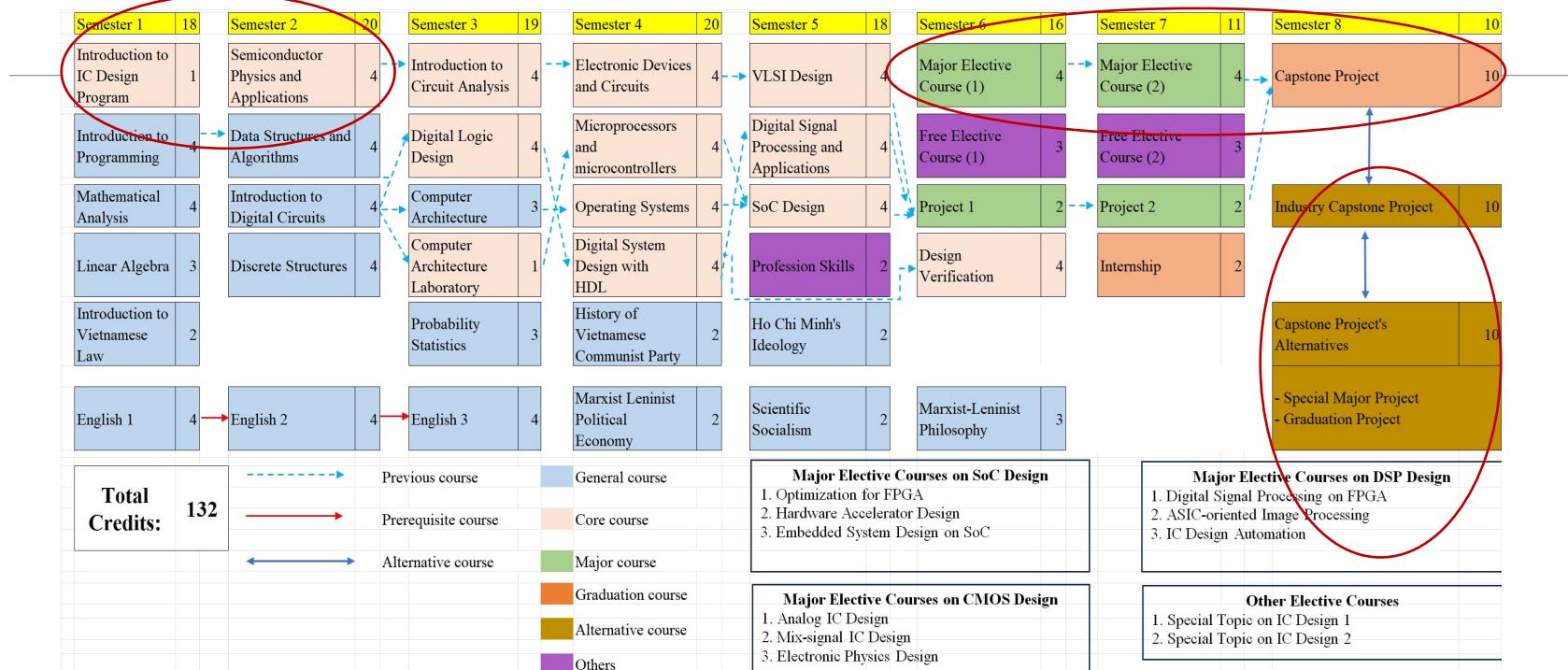
FCE students				
2024		2025		
Grad.	14		0	
Under.	1034		1268	
Stud./Yr.	317	8.7/10	325	8.5/10
Bach.CE	226	26.2	225	25.3
Bach.IC	91	26.5	100	27.0
Ms.CE	14		22	



CE CURRICULUM 2024

COMPUTER ENGINEERING

8 semesters


Major in IoT
Major in Robotics and AI

IC DESIGN CURRICULUM 2024

COMPUTER ENGINEERING

IC DESIGN ENGINEERING
8 semesters
132 credits

❖ CMOS IC Design
❖ System-on-Chip Design
❖ DSP Design

MASTER PROGRAM 2024

COMPUTER ENGINEERING

UNDERGRAD PROGRAM	MASTER OF COMPUTER ENGINEERING								
4 YEARS	YEAR 1					YEAR 2			
1- Bachelor of Computer Engineering 2- Bachelor of IC Design 3- Bachelor of EE & Automation Control 4-Bachelor of CS/IS/SE/IT/DS	Track 1	Research Based Method 1	Semester 1	7	Semester 2-4			53	Total Credit
			Phylosophy	3	Research-Based Thesis –Method 1			53	60
			Scientific Research Methodology	2					
			Advanced Scientific Research Methodology	2					
	Track 2	Research Based Method 2	Semester 1	14	Semester 2	20	Semester 3	12	Semester 4
			Phylosophy	3	Advanced VLSI Design	4	Major Elective course	4	15
			Scientific Research Methodology	2	Advanced ASIC Design	4	Research Project on Embedded System & IoT	4	
			Mathematics in Computer Engineering	3	Advanced Embedded Systems Technologies	4	Research Project on IC Design	4	
			Advanced Computer Systems Engineering	3	Advanced IoT Technologies	4	Preparation for Thesis		
			Management and Leadership Skills for Computer Engineering	3	Research Topic	4			61
	Track 3	Application-Based	Semester 1	14	Semester 2	20	Semester 3	16	Semester 4
			Phylosophy	3	Advanced VLSI Design	4	Major Elective course 1	4	12
			Scientific Research Methodology	2	Advanced ASIC Design	4	Major Elective course 2	4	
			Mathematics in Computer Engineering	3	Advanced Embedded Systems Technologies	4	Major Elective course 3	4	
			Advanced Computer Systems Engineering	3	Advanced Internet of Things Technologies	4	Major Elective course 4	4	62
			Management and Leadership Skills for Computer Engineering	3	Research Topic	4			

Major Elective Courses in IC Design

1. Semiconductor Manufacture Process Technologies - 4
2. IC Packaging Technologies - 4
3. SoC Design Technology for AIoT - 4
4. Advanced Mixed-Signal Integrated Circuit Design - 4

Major Elective Courses in AI&IoT

1. Cloud and Edge Computing - 4
2. Application of Artificial Generative Intelligence - 4
3. Parallel System Programming with GPU - 4
4. Edge AI Technologies - 4
5. Special topic 2 [Industry-oriented Technology Topic] - 4

COMPUTER ENGINEERING

Introduction to ASICLAB

Focuses on the principles and methodologies involved in the design and development of IC & System on Chip Design, AIoT and Its applications.

Research & Training

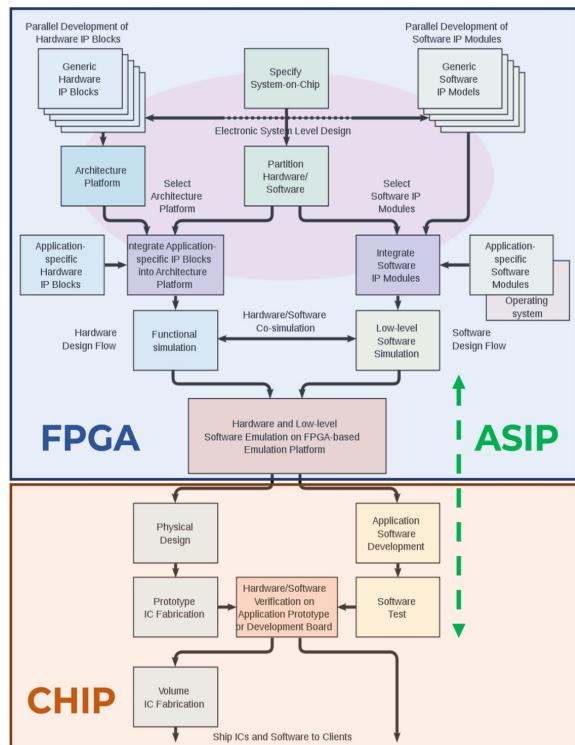
Hardware

HW-SW Codesign

IC Design

SoC Design

IoT Platform


AIoT
Applications

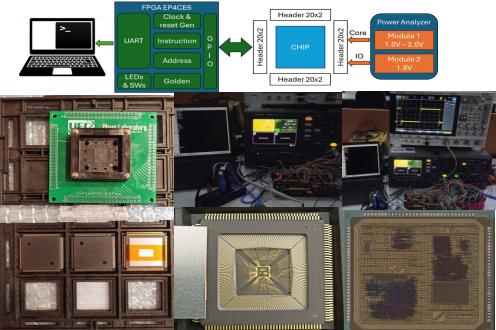
COMPUTER ENGINEERING

ASICLAB - Facilities

LAB Methodology

LAB Equipment

SW tools	EDA – Cadence (Virtussoo, Inovus,...) FPGA – Xilinx (Vitis AI, Vitis HLS)
Server	A4USA003 (16 Cores, 196 GB RAM, 4 TB SSD) ALVEO 250
DEV. KIT	Vertex- 7 FPGA VC707 Zynq 7000 SoC KRIA KV260 VISION AI
Measurement tools	Tektronix TDS2012C Tektronix Mixed Signal Oscilloscope MSO54 Keysight 16862A 68-Channel Portable Logic Analyzer N5172B EXG X-Series RF Analog Signal Generator, 9 kHz to 6 GHz


ASICLAB – Research and Training

Dr. Nguyen Minh Son

Director

Prototypes

PI & Co-PI

Short Course training

- 1- Logic Design & Synthesis
- 2- Design Verification
- 3- Physical Design

Lab tools:

Cadence – Innovus, Xcelium, Genus, Virtuoso

SoC KIT – ZC 05, ZCU 102, ZCU 129

RTL R&D Team

DV R&D Team

PD R&D Team

ES R&D Team

COMPUTER ENGINEERING

ASICLAB – Research and Training

09

Research
Assistants

17

Research
Interns

Director

Dr. Nguyen Minh Son

16

Collaborating
Lecturers

Key Members

MSc. DucTT

MSc. TungTT

BE. ThinhTQ

BE. PhatNT

Research Advisors

Prof. Tanaka
Kiyofumi

Prof. Pham
Cong Kha

Prof. Dirk
Slama

Bach Luong

Phil Hoang

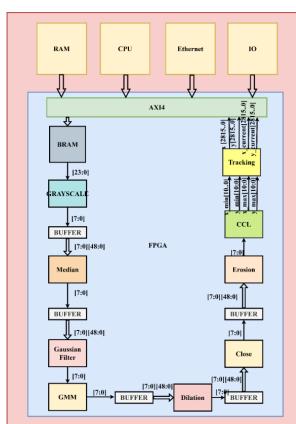
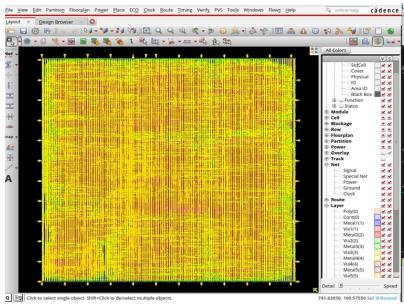
Van Le

Training Activities – Design Verification Course

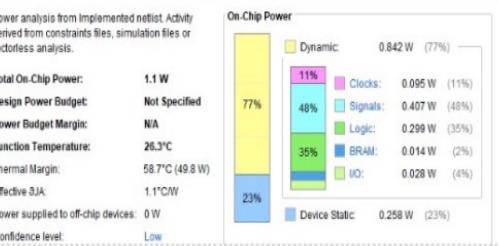
- **Course Objective:** the participants will be able to build a basic testbench to verify an RTL design using a modern method in Universal Verification Methodology.
- **Course Format**
 - ✓ The course consists of nineteen sessions.
 - ✓ The first seven sessions cover basic understanding of building a UVM testbench in three phases. We will study how to build the testbench components in each phase. In
 - ✓ The remaining twelve sessions, apply the knowledge to verify a SPI controller, follow the industry standard procedure that includes verification planning, testbench construction and coverage closure.
 - ✓ The teams will present their work according to the given format.
- **Tools:** The source code in the labs and lab_solutions was designed to run on both Cadence Xcelium tool as well as Siemens Questa tool. The Makefiles list the command syntaxes used to invoke Xcelium or Questa.

Training Activities – Design Verification Course

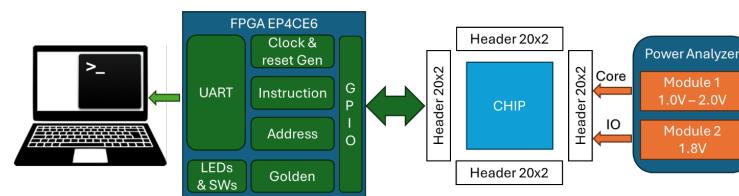
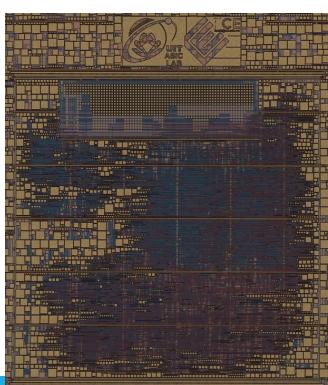
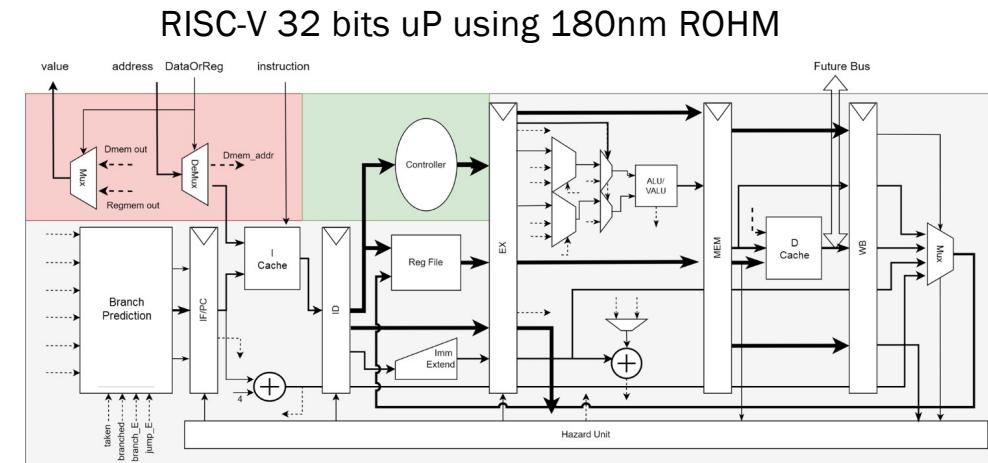
Section	Tasks	Duration	Section	Tasks	Duration
SystemVerilog and Fundamental Verification Concepts	<p>Introduction: course objectives and prerequisites</p> <p>Lecture:</p> <p>1) <u>SystemVerilog</u> <ul style="list-style-type: none"> - Interface - Aggregate data type - Package - Class - Randomization and constraint block - <u>Covergroup</u> and <u>coverpoint</u> <p>Lab:</p> <ul style="list-style-type: none"> - exercise1.sv - exercise2.sv - exercise3.sv - inf_lab.sv <p>Lecture:</p> <p>2) What is verification?</p> <p>3) Basic understanding of verification planning</p> <ul style="list-style-type: none"> - Generation of verification requirements derived from the design specification - Three-phase testbench construction <ul style="list-style-type: none"> + Phase 1: Stimulus generation + Phase 2: Data checking + Phase 3: Capture of functional coverage - Verification closure using functional coverage metrics </p>	Days 1,2,3 6 hours	SystemVerilog and Fundamental Verification Concepts	<p>Introduction: course objectives and prerequisites</p> <p>Lecture:</p> <p>1) <u>SystemVerilog</u> <ul style="list-style-type: none"> - Interface - Aggregate data type - Package - Class - Randomization and constraint block - <u>Covergroup</u> and <u>coverpoint</u> <p>Lab:</p> <ul style="list-style-type: none"> - exercise1.sv - exercise2.sv - exercise3.sv - inf_lab.sv <p>Lecture:</p> <p>2) What is verification?</p> <p>3) Basic understanding of verification planning</p> <ul style="list-style-type: none"> - Generation of verification requirements derived from the design specification - Three-phase testbench construction <ul style="list-style-type: none"> + Phase 1: Stimulus generation + Phase 2: Data checking + Phase 3: Capture of functional coverage - Verification closure using functional coverage metrics </p>	Days 1,2,3 6 hours



Training Activities – Design Verification Course

SPI TB P1 Planning Class Project	<p>Lecture: Review of the SPI specification. Discussion on the format of a verification plan.</p> <p>Lab: Create an Excel file that lists all verification requirements.</p> <p>Lecture: Discussion on how to create a SPI interface and an APB interface.</p> <p>Lab: Create spi_if.sv, apb_if.sv and clk_rst_if.sv to be saved in the resource database.</p> <p>Lecture: Discussion on how to create the TLM transaction.</p> <p>Lab: Create a spi_tlm package named spi_tlm_pkg.svh that contains the class definition of spi_tlm class.</p> <p>Lecture: Discussion on how to create a Makefile to compile the testbench in steps.</p>	Days 10,11 4 hours
--	--	-----------------------


Research Activities

Year	Research Project			Students Projects
	HCMG	VNUHCM	UIT	
2020	2	3	4	26
2021	1	1	5	34
2022	2	1	12	20
2023		5	5	40
2024		7	12	58
2025	1	4	6	28




uC RISC 32 bits

	RISC-V Steel MCU (This work)	RISC-V MCU [3] (2020)	RISC-V SoC [11] (2022)
Core	Steel Core	VexRISCV	VexRISCV
Process	CMOS 45 nm	SOTB 65 nm	CMOS 65 nm
Frequency (MHz)	100	156	50
Area (μm ²)	644,680	1,323,640	15,963,580
Core Vdd (V)	0.9	0.6	N/A
Power (mW)	13.52	5.21	42.1

AI Accelerator for Image processing

Research Activities – Publications

Physical Stats

Area: 918.96 × 917.28 μm

Performance

Designed Freq: 50 MHz

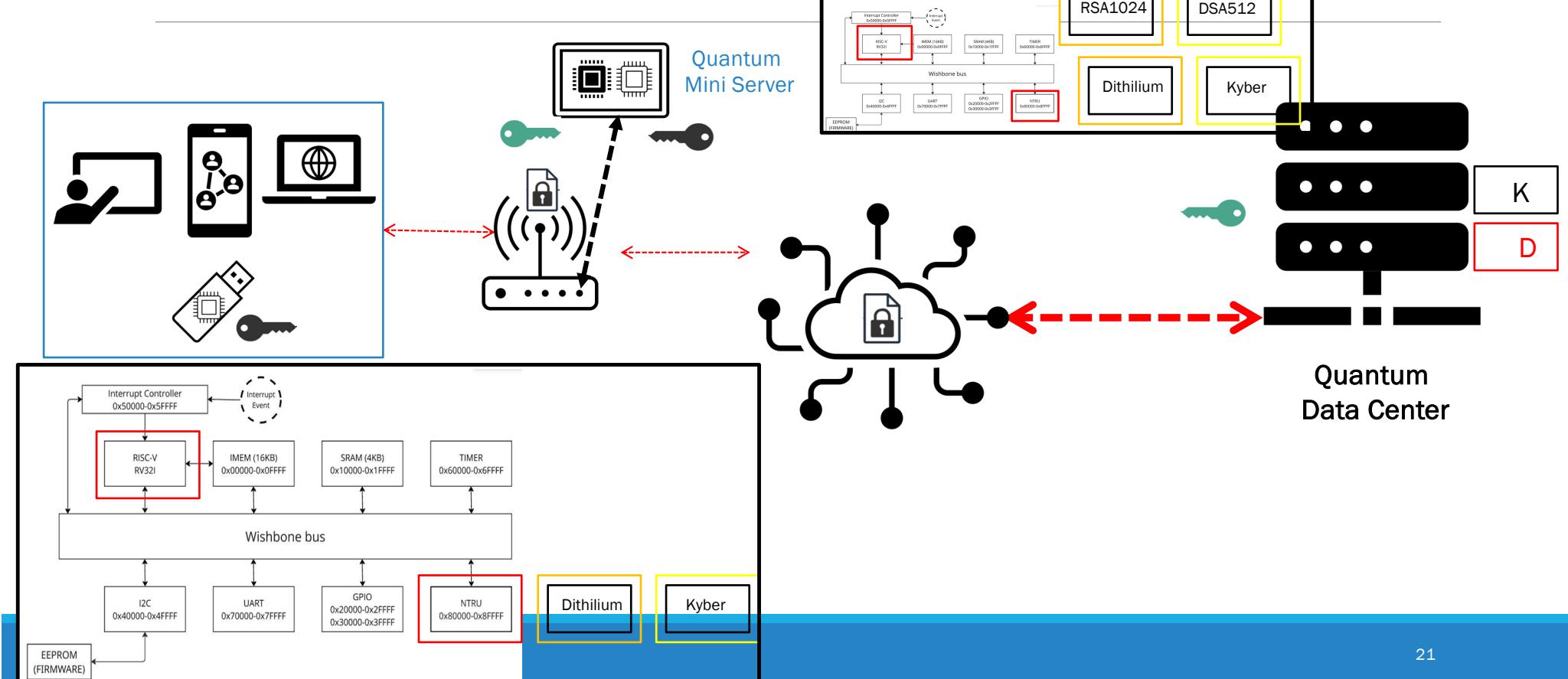
Core Size: 898.8 × 897.12 μm

Fmax: 60 MHz

No. Pins: 32 Pins

Power consumption: 61.63 mW

Cache: 512 Bytes


Voltage: 1.8 V

R&D Projects – Payment/Passkey for PQC applications

Funded by.

Project Type : PQ Application

Duration. : 2024 - NOW

ASIC LAB PARTNERS

Thank you!