Using Python in Verification

[
Agenda

* Intro to Python

* Using Python for verification
* CoCoTB

c UVM

* Python for UVM

12/15/2025 Copyright of Alpinum Systems Ltd. 2

Intro to Python

Introduction to Python

* Released in 1991, Python is a high-level, interpreted, programming language
* that is simple to write, read and use (syntax & semantics resemble C & C++)

* Now widely used in web development, data science, Al/ML, hardware, ...
e Design & Verification

Sep 2024 Sep 2023 Change Programming Language Ratings Change
TIOBE Index, Sept 2024 1 1 @& Python 20.17% +6.01%
(https://www.tiobe.com/tiobe-index/)

2 3 A @ Cht 10.75% +0.09%

3 4 A £, Java 9.45% -0.04%

4 2 v @ c 8.89% 2.38%

5 5 @ c# 6.08% 1.22%

6 6 JS JavaScript 3.92% +0.62%

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

=
IlHel IO World” @ CONSULTING

Python Java

print("Hello, World!") public class Hello {

public static void main(String[] args) {
System.out.printin("Hello, World!");

}
}

S
Basic input

* An input statement, variable = input(“message"), has three parts:
* variable = value stored in memory.

* The input() function reads one line of input from the user. A function is a
named, reusable block of code that performs a task when called. The input is

stored in the computer's memory and can be accessed later using the
variable.

* message indicates the program is waiting for input.

Keywords (these are reserved)

False awalt else import pass
None break except in ralise
True class finally |1s return
and contlnue for lambda try

as def from nonlocal while
assert |del global not with
synch elif 1f or yield

CONSULTING

Operator Precedence

() Parentheses (1 +2) *3]9

o Exponentiation 2 ** 4 16

+ - Positive, negative —math.pl -3.14159
5/ Multiplication, division | 2 ™ 3 6

+, - 1 + 2 3

Addition, subtraction

CONSULTING

Types in Python

Basic Type
Integer numbers

Floating-point numbers

Complex numbers
Strings and characters

Boolean values

Category
Sequence
Mapping
Set
Binary

Types

list, tuple, range, str
dict

set, frozenset

bytes, bytearray, memoryview

CONSULTING

https://realpython.com/python-data-types/#integer-numbers
https://realpython.com/python-data-types/#floating-point-numbers
https://realpython.com/python-data-types/#complex-numbers
https://realpython.com/python-data-types/#strings-and-characters
https://realpython.com/python-data-types/#booleans

Libraries in Python

* Alibrary is a group of modules
that contain functions, classes
and methods to perform
common tasks like data
manipulation, math operations,
web scraping and more.

Importing entire libraries (This is a comment)
import math
import pandas as pd

CONSULTING

Rank Library Primary Use Case

1 NumPy Scientific Computing
2 Pandas Data Analysis

3 Matplotlib Data Visualization

4 SciPy Scientific Computing
5 Scikit-learn Machine Learning

6 TensorFlow Machine Learning/Al

7 Keras Machine Learning/Al

8 PyTorch Machine Learning/Al

9 Flask Web Development

10 Django Web Development

11 Requests HTTP for Humans

12 BeautifulSoup Web Scraping

13 Selenium Web Testing/Automation
14 PyGame Game Development
15 SymPy Symbolic Mathematics
16 Pillow Image Processing

17 SQLAlchemy Database Access

18 Plotly Interactive Visualization
19 Dash Web Applications

20 Jupyter Interactive Computing

Objects in Python

Define a class
* In Python, objects are class Dog:

. fel def init (self, name, age):
Instances ofr classes. self.name = name # Instance attribute

* A class serves as a blueprint self.age = age # Instance attribute

for creating objects,

encapsu|ating data and # Create an object (instance) of the class
dogl = Dog("Buddy", 3)
methods.

Access object attributes
print(dogl.name) # Output: Buddy
print(dogl.age) # Output: 3

Python in verification
and CoCoTB

What is cocoth?

/>
Ocotb
. An RTL simulator plugin

. A Python library for writing synchronous logic

your testbench (Python) RTL simulator

Icarus, GHDL, NVC, Verilator, Riviera,
Questa/ModelSim, Xcelium, ...

cocotb library cocotb your RTL code (sv, VHDL) 13

VPI, VHPI, FLI

[
Why Python for verification?

Productive to write, easy to read

Easy to interface with

Huge existing ecosystem

Popular language: easy to find engineers
cocotb is open source

e You are free to use and modify at will.

e Developed, maintained, and supported by volunteers.

e You can contribute. Just open a pull request on GitHub.

e You should contribute to get improvements into cocotb. 4

o The FOSSi Foundation provides a legal and administrative home for the project.

Our first cocotb test

// adder.sv # test adder 1.py

“timescale 1ns/lps import cocotb

from cocotb.triggers import Timer
module adder (

parameter integer DataWidth = 4
) (@cocotb.test

input logic [DataWidth-1:0] a i, async def adder basic test(dut):
input logic [DataWidth-1:0] b_j_, "M Tast for 5 + 10"""
output logic [DataWidth:0] X O

) ; B dut.a i.value = 5
dut.b i.value = 10
assign x o = a i + b 1i;
endmodule awalt Timer (2, units="ns")

assert dut.x o.value.to unsigned() == 14

Acloserlook at design access

Let’s look at dut.x o.value.to unsigned():

dut
The root handle (the VHDL/Verilog toplevel). Passed as first argument to any @Gcooctb. test function.
“dut” stands for “device under test”.

dut.x o

A handle (pointer) to a top-level signal named x o (could be a port or an internal signal).

dut.x o.value
A LogicArray instance representing the value of signal x_o.

dut.x o.value.to unsigned()

A Python integer representing the value of the x o as unsigned integer. 6

[>

CONSULTING

A Python script to run Icarus Verilog

run test adder 1.py

from cocotb tools.runner import Icarus

def test adder 1():
"""Simulate the adder with Icarus Verilog"""

sim = Icarus/()
sim.build(
sources=["adder.sv"],
hdl toplevel="adder",
always=True,
)
sim.test (hdl toplevel="adder", test module="test adder 1")

17

if name == " main_":
test adder 1()

And go! Oops.

python3 run test adder 1.py

-.—-—-ns INFO
ment interpreter at
-.—-—-ns INFO
.00ns INFO
.00ns INFO
.00ns INFO
.00ns INFO

O O O O

2.00ns INFO

er basic test

gpi

CONSULTING

..mbed/gpi embed.cpp:108 in set program name in venv Using Python virtual environ

/home/philipp/src/cocotb-tutorial/.direnv/python-3.11/bin/python

gp1

cocotb

cocotb

cocotb
cocotb.regression

cocotb.regression

, 0))> = LogicArray('01111', Range (4,

2.00ns INFO

cocotb.regression

../gpi/GpiCommon.cpp:101 in gpi print registered impl VPI registered
Running on Icarus Verilog version 12.0 (stable)
Running tests with cocotb v2.0.0.dev0+5d0f4f76 from /path/to/site-packages/cocotb
Seeding Python random module with 1726854133
running test adder l.adder basic_test (1/1)
Test for 5 + 10

test adder 1l.adder basic test failed
Traceback (most recent call last):

File "/path/to/0l.adder/test adder 1.py", line 16, in add

assert dut.x o.value.to unsigned() == 14 §# really?

AAAAAAAAAAAAAAAAAAAAAANAAAAAAAAAAAAAAAAAAN

AssertionError: assert 15 == 14
+ where 15 = <bound method LogicArray.to unsigned of LogicArray('01111', Range (4, 'down

'downto', 0)).to unsigned

+ where <bound method LogicArray.to unsigned of LogicArray('01111', Range (4, 'downto'
+ where LogicArray('01111', Range(4, 'downto', 0)) = LogicObject (adder.x o) .value

+ where LogicObject (adder.x o) = HierarchyObject (adder) .x o

R R S I I b b b b R R R R S I S S S S S I b b b S R S S S S S S S S S S b b b b b R S S S S S S S S 4

** TEST STATUS SIM TIME (ns) REAL TIME (s RATIO (ns/s) **

*~k*****~k*****~k*~k***J R R i B i g

** test adder l.adder basic test FAIL 2.00 0.00 1705.66 **
R e e I b i b b I b b b e e I b b I b b b b b b b b b b b b b e b b b b e b b b b b b b b b b e b b b b i b b b b b e b b b b b I I i b b b b b i b b b b b b b b b

** TESTS=1 PASS=0 FAIL=1 SKIP=0 2.00 0.01 226.25 **

R R e R e S e e e R e R e R e R R e R e S e I e S e S S S e S R S S S S S e S b S O S

Recap: our first cocotb test

What did we learn?

e Atestisaasync Python function decorated
with Qcocotb. test.

e Access any signal in the design through the
dut root handle.

e Make time pass by using await Timer () .
e Use assert for checking.

e Invoke the simulator to run the test through
a Python script using

cocotb_tools.runner.

What’s new in cocotb 2.0?

e The Python data type of

dut.my signal.value changed from
BinaryValue to LogicArray. The
interfaces are similar, but you need to be
more explicit at times (e.g., when casting to
an integer).

e The yield syntaxis gone.
® raise TestFailureisgone.

e Makefiles continue to be provided, but give
the new Python runner a try!

CONSULTING

Click to edit Master title style

Basic randomization and multi-simulator
support

20

Configure the test runner

test adder 2.py

import random
import cocotb
from cocotb.triggers import Timer

@cocotb.test
async def adder randomised test (dut):
"""Test for adding 2 random numbers multiple times"""

for in range (10) :
= random.getrandbits (4)
random.getrandbits (4)

a
b

dut.a i.value = a
dut.b i.value = b

awalt Timer (2, units="ns")

assert dut.x o.value.to unsigned() == a + b

21

[>

CONSULTING

Intro to UVM

[>

Features of UVM

* Standardized Base Classes promotes reuse and consistency

e Constrained Random Testing is automated, thorough stimulus generation
* Functional Coverage ensures comprehensive verification progress

* Factory Mechanism enables flexible testbench configuration

* Modularity and Reusability reduces development time for future projects
* TLM Interfaces simplifies and speeds up component interaction

 Suitable for small to complex designs

12/15/2025 23

Introduction to the UVM library

* The UVM library provides all the building blocks that we require to build modular, scalable, reusable,
verification environments

* This library contains base classes, utilities, and macros to support the entire verification process

* To use UVM Library, the user needs to:
e Compile uvm_pkg.sv file
* Import uvm_pkg into the desired scope
* Include a file that contains uvm macros

12/15/2025 24

[>

UVM Class Hierarchy

uvm_object
name] |
:fn"nﬂ} uvm_transaction
print() T
= uvm_sequence_item
él'}.

uvm_report_object
uvm_report_~()

uvm_segquence

l = body()
uvm_report_handler uvm_component uvm_port_base TLM
parent e i e Foundational building blocks
children uvm_* export uvm_* port uvm_* imp
et/set_confi — — — i
o : gmamﬁ al) Dynamic components
write() build() <]7 tim_fifo —4 tim_req _rsp_channel
connect()) T T - Top-level structure
end_of_elaboration() analysis_fifo tim_transport_channel
.| start_of_simulation()
¥ run()
run_test uvm test—| g uvm_sequencer
- = T /\ is-arelationship
~ Tuvm_munitor uvm_agent
uvm_driver € has-arelationship

uvm_scoreboard

12/15/2025 https://www.cse.scu.edu/~mlwang/verification/Verification.pdf 25

https://www.cse.scu.edu/~m1wang/verification/Verification.pdf

Structure of a UVM Test Bench

e A UVM testbench is a structured and reusable environment
designed to verify a Design Under Test (DUT)

* It follows a modular approach and is composed of various
components, each with specific roles in driving, monitoring,
and analyzing the DUT's behavior

https://desn.org.uk/introduction-to-semiconductor-
design-verification-dv/

12/15/2025

Environment

Sequence

Sequencer

. Transaction

Monitor Dniver

Transaction .

Interface

Design Under Test (DUT)

[>

CONSULTING

https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/

Python and UVM

Using a Python-only UVM Approach

* Many UVM environments leverage Python-based * Considerations for UVM Environments
frameworks like pyuvm or cocotb, which expect Python When integrating Python with SystemVerilog UVM
files to have the .py extension for proper execution. testbenches, ensure that your Python scripts use .py
e If you are using pyuvm (a Python implementation of » with tools like cocotb or custom DPI (Direct
UVM), your Python script might look like this: Programming Interface) setups.

* For hybrid environments (e.g., Python controlling
UVM testbenches), frameworks like cocotb or uvm-

Filename: testbench.py python simplify the interaction between Python and
from pyuvm import * HDL simulators.
@pyuvm.test()

class ExampleTest(uvm_test):
def build_phase(self):
self.env = AluEnv("env", self)
async def run_phase(self):
self.raise_objection()
await self.env.run_test_sequence()
self.drop_objection()

from uvm import uvm_test, run_test ‘
. . class MyTest(uvm_test):
Co-simulation Approach def build_phase{self, phase): ALPINUM
super().build_phase(phase)
Build env, agents, etc.

. Usmg cocotb with UVM

Compile and run with a simulator that supports VPI (e.g., Questa, VCS, Icarus Verilog):

* Bash: make SIM=questa TOPLEVEL=dut MODULE=test_dut def run_phase(self, phase):
* Interaction with UVM: . . .
e Your SV UVM environment can send/receive transactions via DUT ports or via DPI calls to Python. phase.ra|se_object|on(self)
e Python can act as a scoreboard, stimulus generator, or coverage collector. # Drive transactions here
e Using uvm-python phase.drop_objection(self)
* uvm-python is a Python port of UVM 1.2.
* You can write UVM-style classes in Python and connect them to your SV DUT via cocotb. . . n . ",
if _name__ ==" main_ "

* This lets you reuse UVM methodology but in Python syntax.

* DPI-C Direct Calls

* If you want tight coupling between SV UVM and Python:
1.Write a C shim that embeds Python (python.n API). Systemverilog

g:gﬁolgtyftzz:]?ui::l{ir;::%i?(;/ct\ll;afr?)?-g\./M sequences or scoreboards, etc import "DPI-C" function void py_process(input int data);
initial begin
py_process(42);

end

C (py_shim.c):

#include <Python.h>

void py_process(int data) {
Py _Initialize();
PyObject* pModule = Pylmport_ImportModule("my_py _module");
PyObject* pFunc = PyObject_GetAttrString(pModule, "process_data");
PyObject* pArgs = Py_BuildValue("(i)", data);
PyObject_CallObject(pFunc, pArgs);
Py_Finalize();

run_test(MyTest)

https://github.com/tpoikela/uvm-python
https://github.com/tpoikela/uvm-python
https://github.com/tpoikela/uvm-python
https://github.com/tpoikela/uvm-python

Co-simulation Approach

« Simulator Support

* You need a simulator that supports:
VPI for cocotb (Icarus, Questa, VCS, Xcelium, Riviera-PRO)
DPI-C for direct Python embedding
PLI if using older flows

 Considerations
* If you want minimal disruption to your existing SV UVM testbench
» use cocotb to connect Python to your DUT and let UVM run as usual.

« If you want to write UVM entirely in Python

* use uvm-python

« If you have an existing SV-UVM database, then co-simulate
« for example, SystemVerilog UVM sequences can call a Python function to generate stimulus dynamically, etc

S
Summary

* Intro to Python

* Using Python for verification
* CoCoTB

c UVM

* Python for UVM

12/15/2025 Copyright of Alpinum Systems Ltd. 31

	Slide 1: Using Python in Verification
	Slide 2: Agenda
	Slide 3: Intro to Python
	Slide 4: Introduction to Python
	Slide 5: “Hello World” 
	Slide 6: Basic input
	Slide 7: Keywords (these are reserved)
	Slide 8: Operator Precedence
	Slide 9: Types in Python
	Slide 10: Libraries in Python
	Slide 11: Objects in Python
	Slide 12: Python in verification and CoCoTB
	Slide 13: What is cocotb?
	Slide 14: Why Python for verification?
	Slide 15: Our first cocotb test
	Slide 16: A closer look at design access
	Slide 17: A Python script to run Icarus Verilog
	Slide 18: And go! Oops.
	Slide 19: Recap: our first cocotb test
	Slide 20: Basic randomization and multi-simulator support
	Slide 21: Configure the test runner
	Slide 22: Intro to UVM
	Slide 23: Features of UVM
	Slide 24: Introduction to the UVM library
	Slide 25: UVM Class Hierarchy
	Slide 26: Structure of a UVM Test Bench
	Slide 27: Python and UVM
	Slide 28: Using a Python-only UVM Approach
	Slide 29: Co-simulation Approach
	Slide 30: Co-simulation Approach
	Slide 31: Summary

