
Using Python in Verification

• Intro to Python

• Using Python for verification

• CoCoTB

• UVM

• Python for UVM

Agenda

12/15/2025 Copyright of Alpinum Systems Ltd. 2

Intro to Python

• Released in 1991, Python is a high-level, interpreted, programming language

• that is simple to write, read and use (syntax & semantics resemble C & C++)

• Now widely used in web development, data science, AI/ML, hardware, …
• Design & Verification

Introduction to Python

TIOBE Index, Sept 2024 (https://www.tiobe.com/tiobe-index/)

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

Python

print("Hello, World!")

Java

public class Hello {

 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }

}

“Hello World” ☺

• An input statement, variable = input(“message"), has three parts:
• variable = value stored in memory.

• The input() function reads one line of input from the user. A function is a
named, reusable block of code that performs a task when called. The input is
stored in the computer's memory and can be accessed later using the
variable.

• message indicates the program is waiting for input.

Basic input

False await else import pass

None break except in raise

True class finally is return

and continue for lambda try

as def from nonlocal while

assert del global not with

synch elif if or yield

Keywords (these are reserved)

Operator Precedence

Category Basic Type

int Integer numbers

float Floating-point numbers

complex Complex numbers

str Strings and characters

bool Boolean values

Types in Python

Category Types

Sequence list, tuple, range, str

Mapping dict

Set set, frozenset

Binary bytes, bytearray, memoryview

https://realpython.com/python-data-types/#integer-numbers
https://realpython.com/python-data-types/#floating-point-numbers
https://realpython.com/python-data-types/#complex-numbers
https://realpython.com/python-data-types/#strings-and-characters
https://realpython.com/python-data-types/#booleans

• A library is a group of modules
that contain functions, classes
and methods to perform
common tasks like data
manipulation, math operations,
web scraping and more.

Libraries in Python
Rank Library Primary Use Case

1 NumPy Scientific Computing

2 Pandas Data Analysis

3 Matplotlib Data Visualization

4 SciPy Scientific Computing

5 Scikit-learn Machine Learning

6 TensorFlow Machine Learning/AI

7 Keras Machine Learning/AI

8 PyTorch Machine Learning/AI

9 Flask Web Development

10 Django Web Development

11 Requests HTTP for Humans

12 BeautifulSoup Web Scraping

13 Selenium Web Testing/Automation

14 PyGame Game Development

15 SymPy Symbolic Mathematics

16 Pillow Image Processing

17 SQLAlchemy Database Access

18 Plotly Interactive Visualization

19 Dash Web Applications

20 Jupyter Interactive Computing

Importing entire libraries (This is a comment)
import math
import pandas as pd

• In Python, objects are
instances of classes.

• A class serves as a blueprint
for creating objects,
encapsulating data and
methods.

Objects in Python

Define a class
class Dog:
 def __init__(self, name, age):
 self.name = name # Instance attribute
 self.age = age # Instance attribute

Create an object (instance) of the class
dog1 = Dog("Buddy", 3)

Access object attributes
print(dog1.name) # Output: Buddy
print(dog1.age) # Output: 3

Python in verification
and CoCoTB

What iscocotb?

13

● An RTL simulator plugin
● A Python library for writing synchronous logic

Why Pythonfor verification?

● Productive to write, easy to read
● Easy to interface with
● Huge existing ecosystem
● Popular language: easy to find engineers
● cocotb is open source

● You are free to use and modify at will.
● Developed, maintained, and supported by volunteers.
● You can contribute. Just open a pull request on GitHub.
● You should contribute to get improvements into cocotb.
● The FOSSi Foundation provides a legal and administrative home for the project. 14

Our first cocotb test

test_adder_1.py

import cocotb

from cocotb.triggers import Timer

@cocotb.test

async def adder_basic_test(dut):

 """Test for 5 + 10"""

dut.a_i.value = 5

dut.b_i.value = 10

await Timer(2, units="ns")

assert dut.x_o.value.to_unsigned() == 14

// adder.sv

`timescale 1ns/1ps

module adder (

parameter integer DataWidth = 4

) (

input logic [DataWidth-1:0] a_i,

input logic [DataWidth-1:0] b_i,

output logic [DataWidth:0] x_o

);

assign x_o = a_i + b_i;

endmodule

Let’s look at dut.x_o.value.to_unsigned():

dut

The root handle (the VHDL/Verilog toplevel). Passed as first argument to any @cooctb.test function.
“dut” stands for “device under test”.

dut.x_o

A handle (pointer) to a top-level signal named x_o (could be a port or an internal signal).
dut.x_o.value

A LogicArray instance representing the value of signal x_o.
dut.x_o.value.to_unsigned()

A Python integer representing the value of the x_o as unsigned integer. 16

Acloserlookat designaccess

run_test_adder_1.py

from cocotb_tools.runner import Icarus

def test_adder_1():

"""Simulate the adder with Icarus Verilog"""

sim = Icarus()

sim.build(

sources=["adder.sv"],

hdl_toplevel="adder",

always=True,

)

sim.test(hdl_toplevel="adder", test_module="test_adder_1")

if name == " main ":

test_adder_1()

17

APythonscriptto run IcarusVerilog

❯ python3 run_test_adder_1.py

-.--ns INFO gpi ..mbed/gpi_embed.cpp:108 in set_program_name_in_venv

ment interpreter at /home/philipp/src/cocotb-tutorial/.direnv/python-3.11/bin/python

Using Python virtual environ

-.--ns INFO gpi ../gpi/GpiCommon.cpp:101 in gpi_print_registered_impl VPI registered

Running on Icarus Verilog version 12.0 (stable)

Running tests with cocotb v2.0.0.dev0+5d0f4f76 from /path/to/site-packages/cocotb

0.00ns INFO

0.00ns INFO

0.00ns INFO

0.00ns INFO

cocotb

cocotb

cocotb

cocotb.regression

Seeding Python random module with 1726854133

running test_adder_1.adder_basic_test (1/1)

Test for 5 + 10

test_adder_1.adder_basic_test failed

Traceback (most recent call last):

File "/path/to/01.adder/test_adder_1.py", line 16, in add

2.00ns INFO cocotb.regression

er_basic_test

assert dut.x_o.value.to_unsigned() == 14

^^

AssertionError: assert 15 == 14

really?

18

+ where 15 = <bound method LogicArray.to_unsigned of LogicArray('01111', Range(4, 'down

+ where <bound method LogicArray.to_unsigned of LogicArray('01111', Range(4, 'downto'

to', 0))>()

, 0))> = LogicArray('01111', Range(4, 'downto', 0)).to_unsigned

+ where LogicArray('01111', Range(4, 'downto', 0)) = LogicObject(adder.x_o).value

+ where LogicObject(adder.x_o) = HierarchyObject(adder).x_o

2.00ns INFO cocotb.regression ***

** TEST STATUS SIM TIME (ns) REAL TIME (s) RATIO (ns/s) **

** test_adder_1.adder_basic_test FAIL 2.00 0.00 1705.66 **

** TESTS=1 PASS=0 FAIL=1 SKIP=0 2.00 0.01 226.25 **

Andgo!Oops.

Recap: our first cocotb test

19

What did we learn?

● A test is a async Python function decorated
with @cocotb.test.

● Access any signal in the design through the
dut root handle.

● Make time pass by using await Timer().

● Use assert for checking.
● Invoke the simulator to run the test through

a Python script using
cocotb_tools.runner.

What’s new in cocotb 2.0?

● The Python data type of
dut.my_signal.value changed from
BinaryValue to LogicArray. The
interfaces are similar, but you need to be
more explicit at times (e.g., when casting to
an integer).

● The yield syntax is gone.
● raise TestFailure is gone.
● Makefiles continue to be provided, but give

the new Python runner a try!

Click to edit Master title style

Basicrandomization and multi-simulator
support

20

test_adder_2.py

import random

import cocotb

from cocotb.triggers import Timer

@cocotb.test

async def adder_randomised_test(dut):

"""Test for adding 2 random numbers multiple times"""

for _ in range(10):

a = random.getrandbits(4)

b = random.getrandbits(4)

dut.a_i.value = a

dut.b_i.value = b

await Timer(2, units="ns")

assert dut.x_o.value.to_unsigned() == a + b

21

Configurethe testrunner

Intro to UVM

23

Features of UVM

• Standardized Base Classes promotes reuse and consistency

• Constrained Random Testing is automated, thorough stimulus generation

• Functional Coverage ensures comprehensive verification progress

• Factory Mechanism enables flexible testbench configuration

• Modularity and Reusability reduces development time for future projects

• TLM Interfaces simplifies and speeds up component interaction

• Suitable for small to complex designs

12/15/2025

• The UVM library provides all the building blocks that we require to build modular, scalable, reusable,
verification environments

• This library contains base classes, utilities, and macros to support the entire verification process

• To use UVM Library, the user needs to:

• Compile uvm_pkg.sv file

• Import uvm_pkg into the desired scope

• Include a file that contains uvm macros

24

Introduction to the UVM library

12/15/2025

25

UVM Class Hierarchy

12/15/2025

Foundational building blocks

Top-level structure

Dynamic components

is-a relationship

has-a relationship

https://www.cse.scu.edu/~m1wang/verification/Verification.pdf

https://www.cse.scu.edu/~m1wang/verification/Verification.pdf

• A UVM testbench is a structured and reusable environment
designed to verify a Design Under Test (DUT)

• It follows a modular approach and is composed of various
components, each with specific roles in driving, monitoring,
and analyzing the DUT's behavior

26

Structure of a UVM Test Bench

12/15/2025

https://desn.org.uk/introduction-to-semiconductor-
design-verification-dv/

https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/
https://desn.org.uk/introduction-to-semiconductor-design-verification-dv/

Python and UVM

Using a Python-only UVM Approach

• Many UVM environments leverage Python-based
frameworks like pyuvm or cocotb, which expect Python
files to have the .py extension for proper execution.

• If you are using pyuvm (a Python implementation of
UVM), your Python script might look like this:

• Considerations for UVM Environments
• When integrating Python with SystemVerilog UVM

testbenches, ensure that your Python scripts use .py
• with tools like cocotb or custom DPI (Direct

Programming Interface) setups.
• For hybrid environments (e.g., Python controlling

UVM testbenches), frameworks like cocotb or uvm-
python simplify the interaction between Python and
HDL simulators.

Filename: testbench.py
from pyuvm import *
@pyuvm.test()
class ExampleTest(uvm_test):
 def build_phase(self):
 self.env = AluEnv("env", self)
 async def run_phase(self):
 self.raise_objection()
 await self.env.run_test_sequence()
 self.drop_objection()

Co-simulation Approach
• Using cocotb with UVM

• Compile and run with a simulator that supports VPI (e.g., Questa, VCS, Icarus Verilog):
• Bash: make SIM=questa TOPLEVEL=dut MODULE=test_dut

• Interaction with UVM:
• Your SV UVM environment can send/receive transactions via DUT ports or via DPI calls to Python.
• Python can act as a scoreboard, stimulus generator, or coverage collector.

• Using uvm-python
• uvm-python is a Python port of UVM 1.2.
• You can write UVM-style classes in Python and connect them to your SV DUT via cocotb.
• This lets you reuse UVM methodology but in Python syntax.

• DPI-C Direct Calls
• If you want tight coupling between SV UVM and Python:

1.Write a C shim that embeds Python (Python.h API).

2.Import that C shim into SV via DPI-C.

3.Call Python functions directly from UVM sequences or scoreboards, etc

from uvm import uvm_test, run_test
class MyTest(uvm_test):
 def build_phase(self, phase):
 super().build_phase(phase)
 # Build env, agents, etc.

 def run_phase(self, phase):
 phase.raise_objection(self)
 # Drive transactions here
 phase.drop_objection(self)

if __name__ == "__main__":
 run_test(MyTest)

Systemverilog
import "DPI-C" function void py_process(input int data);
initial begin
 py_process(42);
end
C (py_shim.c):
#include <Python.h>
void py_process(int data) {

Py_Initialize();
PyObject* pModule = PyImport_ImportModule("my_py_module");
PyObject* pFunc = PyObject_GetAttrString(pModule, "process_data");
PyObject* pArgs = Py_BuildValue("(i)", data);
PyObject_CallObject(pFunc, pArgs);
Py_Finalize();

}

https://github.com/tpoikela/uvm-python
https://github.com/tpoikela/uvm-python
https://github.com/tpoikela/uvm-python
https://github.com/tpoikela/uvm-python

Co-simulation Approach

• Simulator Support
• You need a simulator that supports:

• VPI for cocotb (Icarus, Questa, VCS, Xcelium, Riviera-PRO)
• DPI-C for direct Python embedding
• PLI if using older flows

• Considerations
• If you want minimal disruption to your existing SV UVM testbench

• use cocotb to connect Python to your DUT and let UVM run as usual.

• If you want to write UVM entirely in Python
• use uvm-python

• If you have an existing SV-UVM database, then co-simulate
• for example, SystemVerilog UVM sequences can call a Python function to generate stimulus dynamically, etc

• Intro to Python

• Using Python for verification

• CoCoTB

• UVM

• Python for UVM

Summary

12/15/2025 Copyright of Alpinum Systems Ltd. 31

	Slide 1: Using Python in Verification
	Slide 2: Agenda
	Slide 3: Intro to Python
	Slide 4: Introduction to Python
	Slide 5: “Hello World” 
	Slide 6: Basic input
	Slide 7: Keywords (these are reserved)
	Slide 8: Operator Precedence
	Slide 9: Types in Python
	Slide 10: Libraries in Python
	Slide 11: Objects in Python
	Slide 12: Python in verification and CoCoTB
	Slide 13: What is cocotb?
	Slide 14: Why Python for verification?
	Slide 15: Our first cocotb test
	Slide 16: A closer look at design access
	Slide 17: A Python script to run Icarus Verilog
	Slide 18: And go! Oops.
	Slide 19: Recap: our first cocotb test
	Slide 20: Basic randomization and multi-simulator support
	Slide 21: Configure the test runner
	Slide 22: Intro to UVM
	Slide 23: Features of UVM
	Slide 24: Introduction to the UVM library
	Slide 25: UVM Class Hierarchy
	Slide 26: Structure of a UVM Test Bench
	Slide 27: Python and UVM
	Slide 28: Using a Python-only UVM Approach
	Slide 29: Co-simulation Approach
	Slide 30: Co-simulation Approach
	Slide 31: Summary

