
RISC-V Verification Training Course
This course introduces participants to best-practice CPU Design Verification (DV) strategies so they can contribute effectively to real projects (see the objectives). It is aimed

at engineers new to CPU and/or CPU verification, including verifying integration of the CPU into an SoC (System-on-Chip). or just understand more about it (target audience).

It is delivered fully online with a large number of quizzes and practical exercises to practice the content covered in the lectures. The expected pre-requisites are shown here.

The course is split into 3 parts with links to further details:

1. Introduction to CPU and CPU verification (details)

2. RISC-V CPU verification (details) which focuses on how to verify a RISC-V CPU. It uses an open source UVM test bench and students are expected to use that for the

practical exercises.

o There is one full course on RiscV CPU verification, but partial attendance is also possible for those already familiar with CPU verification (but not familiar

with RISC-V (see column 2 “Shortened version of the course“)

3. RISC-V SoC verification (details) which focuses on the verification of an SoC which incorporates a RISC-V CPU. The main strategy deployed here is to use the RISC-V to

run programs (written in C or assembler) to verify SoC integration and functionality. It uses an open-source test bench and students are expected to use that for the

practical exercises.

Objectives
By the end of the course, participants should be able to:

1. Describe the current best-practice CPU and CPU-based SoC DV strategies.

2. Understand the main methodologies, tools and languages used in those best-practice CPU DV and CPU-based SoC strategies.

3. Apply those best-practice DV methodologies, tools and languages to a basic RISCV CPU design and a RISCV-based SoC design.

4. Analyse a “real” RISCV CPU design or RISCV-based SoC and propose a DV strategy.

5. Understand best-practice CPU and CPU-based SoC DV strategies so they can discuss DV topics confidently with colleagues.

6. Have sufficient understanding of RISCV CPU and a RISCV-based SoC DV tools and methodologies to contribute effectively to real projects.

Target audience
1. Design and verification engineers wanting to learn more about CPU and CPU-based SoC DV strategies.

2. Verification engineers wanting to learn more about RiscV and RiscV-based SoC DV strategies

3. Managers wanting some understanding of CPU and CPU-based SoC DV.

Pre-requisites
 Some experience of DV and System Verilog (SV) with the Universal Verification Methodology (UVM) would be beneficial.

Detailed content
Part 1: CPU and RISC-V Basics

1 Introduction to CPU (approx. 1 hour teaching)
1.1 Introduction to CPU architectures and Instruction Set Architectures (ISA)

 What is an ISA and why do we need them? (code/binary portability)

1.2 Introduction to CPU micro-architectures
 A simple CPU block diagram

 Basic operation of a simple CPU micro-architecture

2 How do we verify a CPU? (approx. 2 hours teaching)
2.1 Overall CPU verification strategies

 Contrast and compare different approaches to CPU verification, and their relative advantages and disadvantages

 Explain a hierarchical simulation-based approach which will be taught here

2.2 Unit level
 This can be done with standard SV-UVM test benches

 Give some basic examples from
o fetch and branch prediction, decode and dispatch, integer execution, load store execution, floating point, instruction cache, data cache, MMU, CSRs.

More specialised units may include vector unit, reorder buffer

o Note detailed unit level verification is too specific to each design to be part of the course

2.3 CPU level
 Explain how this can be performed using binary machine code

 Explain how assembler code can be used to verify the CPU

 Explain how instruction stream generation can be used to generate the assembler

 Example of a UVM test bench for running the generated assembler (converted to binary) on the CPU

2.4 System level integration
 Brief introduction to the objectives of and techniques for verifying the integration of a CPU into an SoC (this is covered in more detail later in the course)

3 Basic CPU level verification and tooling (2 hours teaching + examples)
3.1 Instruction stream generators (ISGs)

 How instruction stream generation works

 The need for constrained pseudo-random generation

 The types of constraints needed

3.2 The “riscv-dv” (open source) tooling
 Overview of riscv-dv as an example of an ISG (this is covered in more detail later in the course)

 Some examples of running riscv-dv

3.3 Impact of adding your own instructions
 This will be explained but not covered in detail (as it is very design specific)

4 CPU microarchitectures for faster code execution (4 hours teaching)
4.1 Reviewing different microarchitecture styles

 For example, RISC vs CISC vs VLIW (this is covered in more detail later in the course)

5 Verifying CPU microarchitectures (4 hours teaching + examples)
5.1 Building functional coverage models for the microarchitecture

 Identify microarchitecture features to verify

 Define suitable functional coverage points

 Extend existing coverage model

 Run tests and review the coverage

5.2 Generate tests to hit the functional
 Review the current constraints

 Extend constraints to hit coverage points in the extended coverage model

6 riscv-dv practical exercises (estimated student independent study time = at least 8 hours, plus at least 1 hour
classroom review)
 Overview of the exercises for extending coverage model and the constraints file, and then running tests to close coverage

 Explanation on how to work independently on the exercises

 How to get support and feedback

6.1 Joint classroom review and feedback on the exercises
 Joint session to review exercises

Part 2: RISC-V CPU verification

7 Introduction to RISCV (approx. 2 hours teaching)
7.1 RISC-V ISA Overview

 Understanding instruction formats

 RISC-V ISA modularity

 Privileges and the memory model

7.2 Assembly Language for RISC-V
 Example programs

8 Writing and running RISCV programs (approx. 1 hour teaching + examples)
8.1 Overview of RISCV software toolchains

 Flow diagrams for the software tool chains

 Flow for creating binary files from assembler and C

8.2 Introducing the RISC-V Assembler and Runtime Simulator (RARS)
 Writing and running examples assembler programs for the basic ISA

 Running them on RARS

8.3 Assembling C code into RISCV assembler
 Writing and running examples C programs for the basic ISA

 Running them on RARS

 Setting practical exercises for writing and running examples assembler and C programs on RARS
o Consider including Metaware on RISC-V (Synopsys toolkit)

9 RISCV practical exercises (estimated student independent study time = at least 4 hours, plus at least 1 hour
classroom review)
 Overview of the exercises for writing and running code for RISCV and running on RARS

 Explanation on how to work independently on the exercises

 How to get support and feedback

9.1 Joint classroom review and feedback on the exercises
 Joint session to review exercises

10 How do we verify integration of CPU in an SoC? (approx. 2 hours teaching)
10.1 System level integration verification

 Explain how software running on a mini-SoC can be used to verify the CPU

 Explain that different (higher performance) platforms might be needed to run the code

 Examples of compliance suites and benchmarks

11 Basic RISC-V level verification and tooling (2 hours teaching + examples)
11.1 The “riscv-dv” (open source) tooling

 Overview of riscv-dv

 Some examples of running riscv-dv

 Reviewing the code generated and run in simulation

 Reviewing the pass/fail

 Reviewing the coverage

11.2 How to generate and run your first riscv-dv test
 Run the tool, simulate the output, check the results, review the coverage for yourself

11.3 Reviewing the riscv-dv functional coverage model
 Review the functional coverage defined in riscv-dv

11.4 Reviewing the riscv-dv constraints model
 How constraints are defined in riscv-dv

 How to make changes and see the impacts of those changes

12 riscv-dv practical exercises (estimated student independent study time = at least 8 hours, plus at least 1 hour
classroom review)
 Overview of the exercises for running the full riscv-dv flow

 Explanation on how to work independently on the exercises

 How to get support and feedback

12.1 Joint classroom review and feedback on the exercises
 Joint session to review exercises

13 Architectural compliance (2 hours teaching + examples)
13.1 Understanding architectural compliance

 What is architectural compliance?

 The different RISCV architectures and differences in compliance requirements

 Architectural compliance suites

 Detailed description of an example compliance suite

13.2 RISC-V compliance suites
 Running an example RISC-V compliance suite

 Reviewing the results

14 CPU microarchitectures for faster code execution (4 hours teaching)
14.1 Reviewing different microarchitecture styles

 For example, RISC vs CISC vs VLIW

 Why RISC and RISCV specifically?

14.2 The RISCV registers
 Overview of the register set

 Register Addressing Modes (e.g. direct, indirect, immediate)

 General purpose vs special registers

14.3 Pipelining
 What is pipelining and which problems does it solve?

 What problems does pipelining introduce?

 Techniques for overcoming these issues (e.g. out-of-order execution, branch prediction, register renaming)

14.4 Additional microarchitectures
 Superscalar processors

o What is a superscalar processor and how are they designed?

 Multithreaded processors

 Vector processors and Vector/SIMD instruction set extensions

 Multi-core processors

15 Final session
 Review the main concepts

 Review the practical exercises and how they apply to real projects

16 Additional Materials
 Add material on how “Formal Verification” could be used

Part 3: RISC-V SoC verification

Full course syllabus

17 Introduction to SoC Verification (approx. 2 hours teaching)
17.1 Introduction to SoC verification

 The main SoC verification tasks and challenges

 The main differences between IP and SoC verification

 The main metrics and signoff criteria used in SoC verification

18 Introduction to the training SoC (approx. 2 hours teaching)
18.1 Introduction to the SoC being used in the course

 An overview of the architecture of SoC being used

18.2 The SoC verification environment
 Overview of the test bench

 The tools and flow for running tests and simulations

 How to add checkers using assertions and write self-checking tests

 Defining and implementing SoC functional coverage models

19 SoC practical exercises (estimated student independent study time = at least 4 hours, plus at least 1 hour
classroom review)
 Overview of the environment for running RISCV code on the SoC

 Overview of the process of updating a test or write a new test and then run it on the SoC

 Exercises to run existing tests

 Exercises to update and run existing tests

 Exercises to write and run new tests

 Ensuring tests are self-checking

 Adding functional coverage

19.1 Joint classroom review and feedback on the exercises
 Joint session to review exercises

20 SoC practical debug exercises (estimated student independent study time = at least 2 hours, including classroom
review)
 Finding bugs, triage and debug flow

 Exercise to run a test on an SoC with a known bug

 Exercise to triage and debug the known bug

21 How do we verify an SoC CPU? (approx. 3 hours teaching)
21.1 Overall SoC verification strategies

 Contrast and compare different approaches to SoC verification, and their relative advantages and disadvantages

 Explain the approach which will be taught here

21.2 SoC verification for specific SoC features
 SoC integration verification and tests

 SoC reset & boot (power on sequence) sequence verification and tests

 SoC clock control and clock gating verification and tests

 SoC power control verification and tests

 SoC interrupt verification and tests

 SoC system control verification and tests

 SoC use case verification and tests

22 SoC verification and signoff practical exercises (estimated student independent study time = at least 4 hours, plus
at least 1 hour classroom review)
 Writing and running tests for a range of SoC features

 Collecting coverage and sign-off metrics

 Writing a SoC sign-off report

22.1 Joint classroom review and feedback on the exercises
 Joint session to review exercises

23 Final session
 Review the main concepts

 Review the practical exercises and how they apply to real projects

24 Additional Materials
 Additional material on how “Formal Verification” could be used

