Encarsia:
Evaluating CPU Fuzzers
via Automatic Bug Injection

Matej Bolcskei, Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi

ETHzirich | g S}

How do hardware fuzzers work?

How do hardware fuzzers work?
They are automated test benches

How do hardware fuzzers work?
They are automated test benches

Stimulus Randomized
generator program

g—E

How do hardware fuzzers work?
They are automated test benches

Stimulus Randomized

generator program RTL
simulation

How do hardware fuzzers work?
They are automated test benches

Stimulus Randomized

generator program RTL
simulation

\

ISA
simulation

How do hardware fuzzers work?
They are automated test benches

Stimulus Randomized

generator program RTL
simulation

i ’ . ’ ’ Do architectural
: values match?
ISA

simulation

How do hardware fuzzers work?
They are automated test benches

generator _ RTL
simulation

A Ty
i ’ ’ E ’ Do architectural
: values match?

ISA

simulation

Fuzzers look great on paper

Fuzzers look great on paper
They achieve high coverage!

A6

Multiplexer

Fuzzers look great on paper
They achieve high coverage!

Multiplexer ﬁ
.|

Register

Fuzzers look great on paper
They achieve high coverage!

4]

Y &lo
~a
“’ob Multiplexer (Branch ﬁ
" 4

FSM e Edge &

Output

Register

Expression

7

Statement

Fuzzers look great on paper
They find bugs!

Fuzzers look great on paper
They find bugs!

ProcessorFuzz: 9 bugs

Fuzzers look great on paper
They find bugs!

DifuzzRTL: 16 bugs

ProcessorFuzz: 9 bugs

Fuzzers look great on paper
They find bugs!

Cascade: 37 bugs

DifuzzRTL: 16 bugs

ProcessorFuzz: 9 bugs

Fuzzers look great on paper
They find bugs!

Everybody gets a bug!

Cascade: 37 bugs

DifuzzRTL: 16 bugs

ProcessorFuzz: 9 bugs

Creators use flashy figures to sell stories

Creators use flashy figures to sell stories

Design coverage

Creators use flashy figures to sell stories

Innnnln TIRER
Design coverage Bug detection

Creators use flashy figures to sell stories

TIRER ignnni
Design coverage Bug detection Input generation

Fuzzer evaluation is flawed

Fuzzer evaluation is flawed
Coverage is not well suited for comparing fuzzers

L. Inozemtseva, and R. Holmes M. Bohme, L. Szekeres, and J. Metzman

“Coverage is not strongly correlated with test suite ...” “On the reliability of coverage-based fuzzer ...”
in ICSE 2014 in ICSE 2022

Fuzzer evaluation is flawed
Coverage is not well suited for comparing fuzzers

L. Inozemtseva, and R. Holmes M. Bohme, L. Szekeres, and J. Metzman

“Coverage is not strongly correlated with test suite ...” “On the reliability of coverage-based fuzzer ...”
in ICSE 2014 in ICSE 2022

Uneven distribution

Fuzzer evaluation is flawed
Coverage is not well suited for comparing fuzzers

L. Inozemtseva, and R. Holmes M. Bohme, L. Szekeres, and J. Metzman

“Coverage is not strongly correlated with test suite ...” “On the reliability of coverage-based fuzzer ...”
in ICSE 2014 in ICSE 2022

Ignores propagation

Uneven distribution

Fuzzer evaluation is flawed
Let’s examine bug discovery

Fuzzer evaluation is flawed
Let’s examine bug discovery

Bug | Device Description
1 BlackParrot Non-boxed single-precision floating point ...
2 BlackParrot Read-after-Write dependencies on fcsr.fflags ...
3 | BlackParrot When mstatus.FS is not set and the fcsris ...
4 BlackParrot The 2 low-bits of sepc CSR are not ...
5 BlackParrot No exception raised when writing certain ..
6 BlackParrot Reading zero register, following specific ...
7 Dromajo PMP checks are performed, and raise ...
8 Rocket & BOOM | Instruction page fault not raised when ...
9 BOOM mstatus.FS is gratuitously set to dirty.

Fuzzer evaluation is flawed
Let’s examine bug discovery

p
3
4
5
6
7
8
9

BlackParrot
BlackParrot
BlackParrot
BlackParrot

BlackParrot

BlackParrot
Dromajo

Rocket & BOOM
BOOM

Non-boxed single-precision floating point ...

Read-after-Write dependencies on fcsr.fflags ...

When mstatus.FS is not set and the fcsris ...

The 2 low-bits of sepc CSR are not ...
No exception raised when writing certain ..

Reading zero register, following specific ...

PMP checks are performed, and raise ...
Instruction page fault not raised when ...

mstatus.FS is gratuitously set to dirty.

»

ERRRR
Never Fuzzed

Flawed evaluation fractures the field

Flawed evaluation fractures the field
What do researchers think of coverage?

Flawed evaluation fractures the field
What do researchers think of coverage?

Flawed evaluation fractures the field
What do researchers think of coverage?

J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee F. Solt, K. Ceesay-Seitz, and K. Razavi
“Difuzzrtl: Differential fuzz testing to find cpu bugs” “Cascade: CPU Fuzzing via Intricate Program Generation”
in S&P 2021 in USENIX Security 2024

Cheap Effective Expensive Ineffective

Flawed evaluation fractures the field
What do researchers think of coverage?

F. Solt, K. Ceesay-Seitz, and K. Razavi
“Cascade: CPU Fuzzing via Intricate Program Generation”

J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee
“Difuzzrtl: Differential fuzz testing to find cpu bugs”

in S&P 2021 in USENIX Security 2024

% J xx
Cheap Effective Expensive Ineffective

‘ Contradiction! ‘

' Tz

Encarsia: Evaluating CPU Fuzzers
via Automatic Bug Injection
A RERR

How do bugs arise in the real world?

How do bugs arise in the real world?
We survey 1672 pull requests

#399 Prevents illegal CSR writes

Accessing a debug register outside of debug mode sets
illegal_csr, but the CSR write still happened. This
change ensures that if an illegal CSR instruction is
signaled, the CSR write is blocked.

assign illegal_csr_insn_o =
illegal_csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;

How do bugs arise in the real world?
We survey 1672 pull requests

#399 Prevents illegal CSR writes Source | Conditionals Mix-ups Other
Ibex 17 14 o)
I11egal cor, but the CoR urite Still happencd. This CVA6 22 11 0
lgnaled, the CSh urite 15 bloked. o Rocket 8 4 0
BOOM 13 33 o)
DAC19 2 2 o
DAC21 4 10 o
assign illegal _csr_insn_ o =
illegal csr | illegal csr_priv; Total 66 111 0

assign csr_we_int =
- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;

All 177 bugs fall into 2 categories

How do bugs arise in the real world?
Signal Mix-ups

assign illegal_csr_insn_o =
illegal_csr | illegal_csr_priv;

assign csr_we_int =
- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;

Definition

x Confusing similar signals

10

How do bugs arise in the real world?
Signal Mix-ups Broken Conditionals

illegal csr = 1°bO;
] .) _ case (csr_addr_i)
a551gn 111egal_csr71nsn_o - . CSR_MSTATUS: csr_rdata_int = mstatus_q
illegal csr | illegal_csr_priv; CSR_DCSR: begin

csr_rdata_int = dcsr_q;
++ illegal csr = ~debug_mode_i;
end
default: illegal _csr = 1°b1;
endcase

assign csr_we_int =
- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;

Definition Definition

~

l
Confusing similar signals |—|—| Mishandling corner cases

m

(V9

10

How do we inject bugs?
Signal Mix-ups

assign illegal_csr_insn_o =
illegal_csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;

Intermediate representation

illegal_csr csr_we_int

csr_wreq

illegal_csr_priv

11

How do we inject bugs?
Signal Mix-ups

assign illegal_csr_insn_o =
illegal_csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;
++ csr_wreq & ~illegal_csr_priv & instr_new_id_i;

Intermediate representation

illegal_csr csr_we_int

csr_wreq

illegal_csr_priv

11

How do we inject bugs?
Signal Mix-ups

assign illegal_csr_insn_o =
illegal csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;
++ csr_wreq & ~illegal_csr_priv & instr_new_id_i;

Intermediate representation

illegal_csr csr_we_int

csr_wreq

illegal_csr_priv

~debug_mode_i

Broken Conditionals

illegal csr = 1°bO;
case (csr_addr_i)
CSR_MSTATUS: csr_rdata_int = mstatus_q
CSR_DCSR: begin
csr_rdata_int = dcsr_q;
illegal csr = ~debug_mode_i;
end
default: illegal _csr = 1°b1;
endcase

Intermediate representation

illegal_csr

1'bl
CSR_MSTATUS

CSR_DPC

11

How do we inject bugs?
Signal Mix-ups

assign illegal_csr_insn_o =
illegal csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;
++ csr_wreq & ~illegal_csr_priv & instr_new_id_i;

Intermediate representation

illegal_csr csr_we_int

csr_wreq

illegal_csr_priv

Broken Conditionals

illegal csr = 1°bO;
case (csr_addr_i)
CSR_MSTATUS: csr_rdata_int = mstatus_q
CSR_DCSR: begin
csr_rdata_int = dcsr_q;
illegal_csr = ~debug_mode_i;
end
default: illegal _csr = 1°b1;
endcase

Intermediate representation

1'b0)
1llegal_csr

1'bl
5 CSR_MSTATUS

11

What about ineffective transformations?
We formally verify architectural observability

12

What about ineffective transformations?
We formally verify architectural observability

X
pnnnng VoM gppnnn
Buggy Original

12

What about ineffective transformations?
We formally verify architectural observability

pnEEnEnm ., BNENEN

l l

5-"‘ R

SRRAER SRRAER
Buggy Original

12

Which fuzzing techniques actually work?

We generate EnCorpus
ARERN

AN
BOOM

TennEn Rocket
lbex

13

Which fuzzing techniques actually work?
We must test each technique in isolation

DifuzzRTL ProcessorFuzz Cascade

14

Is instruction-granular detection worth it?

DifuzzRTL ProcessorFuzz

15

Is instruction-granular detection worth it?

THERN TRERY
DifuzzRTL ProcessorFuzz

15

Is instruction-granular detection worth it?

Rocket g hal Mix-ups

Fuzzer |123456789ABCDEF
DIfRTL XV VVXXXXXXXXI XYV
PFuzz [XVVVXXXXXXXXV XV

Broken Conditionals
Fuzzer |[123456789ABCDEF
DIfRTL X X XXXV VXXV XV XXV
PFuzz XXX XXVV XXV XV XXV

BOOM

Signal Mix-ups
Fuzzer |[123456789ABCDEF
DIfRTL [V VXV VXXV XV XXV
PFuzz VIXVIVIXXVIXVSVSV XXV
Broken Conditionals
Fuzzer |[123456789ABCDEF
DIfRTL [V VX XXXV XXXV XXV

PFuzz

VIXXXXVXXXIVXXY

16

Is instruction-granular detection worth it?

Rocket g;ohal Mix-ups BOOM gignal Mix-ups

Fuzzer |[123456789ABCDEF Fuzzer |123456789ABCDEF
DIfRTL [XV VVXXXXXXXXV XV DIfRTL [V VXV VXXV XV XXV
PFuzz XVVIVIXXXXXXXXY XY PFuzz VIXVIVIXXVIXVSVSV XXV

Broken Conditionals Broken Conditionals

Fuzzer |123456789ABCDEF Fuzzer |123456789ABCDEF
DIfRTL X X XXXV VXXV XV XXV DIfRTL W VXXXXV XXXV XXV
PFuzz XXXXXVVIXXIXVXXYV PFuzz |V VXXXXVXXXIIXXYV

Are hardware coverage metrics effective?

DifuzzRTL ProcessorFuzz

17

Are hardware coverage metrics effective?

Rocket

Cover.

Signal Mix-ups
123456789ABCDEF

None
DifRTL
PFuzz

Cover.

XVIVXXXXXXXXV XY
XVIVXXXXXXXXV XY

XVIVXXXXXXXXV XY

Broken Conditionals
123456789ABCDEF

None
DifRTL
PFuzz

XXXXXVVXXVXVXXY
XXXXXVVXXVXVXXY

XXXXXVVXXVXVXXY

BOOM

Cover.

Signal Mix-ups
123456789ABCDEF

None
DifRTL
PFuzz

Cover.

VVYXIVXXI XIS XXV
VVYXIVXXI XIS XXV
VVYXVVXXV XXXV

Broken Conditionals
123456789ABCDEF

None
DifRTL
PFuzz

VIVXXXXVXXXIVXXY
VIVXXXXVXXXIVXXY

VIXXXXVXXXIVXXY

18

Are hardware coverage metrics effective?

Rocket

Cover.

Signal Mix-ups
123456789ABCDEF

None
DifRTL
PFuzz

XVIVXXXXXXXXV XY
XVIVXXXXXXXXV XY

XVIVXXXXXXXXV XY

Broken Conditionals

Cover. |1123456789ABCDEF
None XXXXXVVXXIXVXXY
DIfRTL X X XXXV VXXV XV XXV
PFuzz X X XX XVV XXV XV XXV

BOOM Signal Mix-ups

Cover. |[123456789ABCDEF
None VVIXVIVIXXIXIVI XXV
DIfRTL WV XV VXXV XV XXV
PFuzz WV XV VXXIXVIIIXXYV

Broken Conditionals

Cover. |123456789ABCDEF
None VVYXXXXYVXXXYVYVXXV
DIfRTL [V VX XXXV XXXV XXV

PFuzz

VIXXXXVXXXIVXXY

18

Does program generation play a role?

T
r"l

TIRRN
DifuzzRTL Cascade

19

Does program generation play a role?

Rocket

Fuzzer

Signal Mix-ups
123456789ABCDEF

DifRTL

Cascade

Fuzzer

XVIVXXXXXXXXV XY
VIVIXIXXXXXXV XY

Broken Conditionals
123456789ABCDEF

DifRTL

Cascade

XXXXXVYIXXIV XS XXV

XVXXXVXXXXXVXXY

BOOM

Signal Mix-ups
Fuzzer |123456789ABCDEF
DIfRTL [V VXV VXXV XV XXV
Cascade W VXXXV VIV VIV VXXV
Broken Conditionals
Fuzzer |123456789ABCDEF
DIfRTL WV X XXXV XXXVVXXYV

Cascade

VVXXXXVXXXVVXXX

20

Does program generation play a role?

Rocket g;ohal Mix-ups BOOM gignal Mix-ups

Fuzzer |[123456789ABCDEF Fuzzer |123456789ABCDEF
DIfRTL [X VVVXXXXXXXXV XYV DIfRTL [V VXV VXXV XV XXV
Cascade WV VV VXV XXXXXXV XV Cascade [V V X XXV VYV VIV XXV

Broken Conditionals Broken Conditionals

Fuzzer |123456789ABCDEF Fuzzer |123456789ABCDEF
DIfRTL X X XXXV VXXV XV XXV DIfRTL [V VXXXXV XXXV XXV
Cascade [X V X X XV X X X X XV X XV Cascade WV V X X X XV X X XV V X XX

Encarsia helps detect misconfigurations

DifuzzRTL
Bugl Detected |Module
5 v UOPCodeFDivDec ...
6 X DivUnit
7 X MulDiv
8 v IntToFP
9 X PipelinedMulUnit
10 v ALU
11 v RegisterReadDecode

21

Encarsia helps detect misconfigurations

DifuzzRTL Forgets the M extension
Bugl Detected |Module
def ._init_(self, isa='RV64G'):
5] 'V |uoPCodeFDivDec ... i n isa:
6 X DivUnit PR S
d ¢ | MuDiv i man s
gl v [intToFP e
9 X PipelinedMulUnit if -é"-’ain*isiz"’vm’
10 \/ ALU isas = ['rv32i', 'rv32m', 'rv32a', 'rv32f']
11 v RegisterReadDecode

Encarsia helps detect misconfigurations

DifuzzRTL Forgets the M extension
Bugl Detected |Module
def __init__ (self, isa='RV64G'):
5|V |uopPcodeFDivDec ... i n isa:
6 X DivUnit PR S
d ¢ | MuDiv i man s
gl v [intToFP e
9 X PipelinedMulUnit if 'é?azn+zs£:'PVB2f,
10 \/ ALU isas = ['rv32i', 'rv32m', 'rv32a', 'rv32f']
11 v RegisterReadDecode

Insight 4:
Fuzzers do not test the entire ISA

Encarsia helps detect flaws
Cascade

W
c
«Q

Detected

Module

0O N O O A WON

v

N SN X X X L

IssueSiot

Arbiter_16
DivSqrtRecF64 mul ...
DivSqrtRecF64 mul ...

UOPCodeFDivDec ...
DivUnit
MulDiv

IntToFP

22

Encarsia helps detect flaws

Cascade

W
c
«Q

Detected

Module

0O N O O A WON

v

N SN X X X L

IssueSiot

Arbiter_16
DivSqrtRecF64 mul ...
DivSqrtRecF64 mul ...

UOPCodeFDivDec...

DivUnit
MulDiv

IntToFP

Excludes whole instructions

if cpu == "cva6":
probability["fsqrt.d"] = ©

if not tolerate_cva6_division():
probability["fdiv.d"] = ©

if not tolerate_cva6_single_precision():
probability["fsqrt.s"] = ©
probability["fdiv.s"] = @

if cpu == "boom":
++ probability["fsqrt.d"] = 0
++ probability["fdiv.d"] = ©

22

Encarsia helps detect flaws

Cascade

vy
c
«Q

Detected

Module

0O N O O A WON

v

N N X X X L

Insight 5:

IssueSiot

Arbiter_16
DivSqrtRecF64 mul ...
DivSqrtRecF64 mul ...

UOPCodeFDivDec...

DivUnit
MulDiv

IntToFP

Excludes whole instructions

if cpu == "cvab":
probability["fsqrt.d"] = ©

if not tolerate_cva6_division():
probability["fdiv.d"] = ©

if not tolerate_cva6_single_precision():
probability["fsqrt.s"] = ©
probability["fdiv.s"] = @

if cpu == "boom":
++ probability["fsqrt.d"] = 0
++ probability["fdiv.d"] = ©

Filtering mechanisms hinder the discovery of further bugs

22

Encarsia injects complex bugs

23

Encarsia injects complex bugs
BOOM Broken Conditional #3

if (reset) begin
eng_ptr <= 3'ho;

end else if (do_enq) begin
if (wrap) begin

eng_ptr <= 3°he;
++ end
end else begin
eng_ptr <= eng_ptr + 1;
- end
end

23

Encarsia injects complex bugs

BOOM Broken Conditional #3
Buffer between FPU and GRs

if (reset) begin
eng_ptr <= 3'ho;

end else if (do_enq) begin
if (wrap) begin

enq_ptr <= 3°ho;
++ end
end else begin
eng_ptr <= eng_ptr + 1;
- end
end

Registers

23

Encarsia injects complex bugs

BOOM Broken Conditional #3
Buffer between FPU and GRs

FPU ALU

if (reset) begin
eng_ptr <= 3'ho;
end else if (do_enq) begin

if (wrap) begin
enq_ptr <= 3°ho;
++ end
end else begin

Buffer

eng_ptr <= eng_ptr + 1;
-- end .
end Registers

| |

23

Encarsia injects complex bugs
BOOM Broken Conditional #3

Buffer between FPU and GRs

FPU ALU
]

if (reset) begin
eng_ptr <= 3'ho;

end else if (do_enq) begin
if (wrap) begin

enq_ptr <= 3°ho;
++ end
end else begin
eng_ptr <= eng_ptr + 1;

Buffer

E Registers

23

Encarsia injects complex bugs

BOOM Broken Conditional #3
Buffer between FPU and GRs

if (reset) begin

eng_ptr <= 3'ho;
end else if (do_enq) begin m ALU

if (wrap) begin

enq_ptr <= 3°ho;

++ end
end else begin
eng_ptr <= eng_ptr + 1;

Registers

23

Encarsia injects complex bugs

BOOM Broken Conditional #3
Buffer between FPU and GRs

if (reset) begin
eng_ptr <= 3'ho;

end else if (do_enq) begin
if (wrap) begin

enq_ptr <= 3°ho;
++ end
end else begin
eng_ptr <= eng_ptr + 1;

Buffer

- end
end

Registers

! 1
T - —

Insight 6:
Fuzzers often miss subtle bugs from microarchitectural corner cases

23

Conclusion

= Hardware fuzzing is rife with false theories

Conclusion

= Hardware fuzzing is rife with false theories
= Accurate evaluation ensures transparency

Conclusion

= Hardware fuzzing is rife with false theories
= Accurate evaluation ensures transparency
= Reveals insights into improving future fuzzers

