
Encarsia:
Evaluating CPU Fuzzers
via Automatic Bug Injection
Matej Bölcskei, Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi

How do hardware fuzzers work?

1

How do hardware fuzzers work?

1

They are automated test benches

How do hardware fuzzers work?

Stimulus
generator

1

They are automated test benches

Randomized
program

How do hardware fuzzers work?

RTL
simulation

Stimulus
generator

1

They are automated test benches

Randomized
program

How do hardware fuzzers work?

RTL
simulation

ISA
simulation

Stimulus
generator

1

They are automated test benches

Randomized
program

How do hardware fuzzers work?

RTL
simulation

ISA
simulation

Stimulus
generator

Do architectural
values match?

1

They are automated test benches

Randomized
program

How do hardware fuzzers work?

RTL
simulation

ISA
simulation

Stimulus
generator

Do architectural
values match?

Feedback

1

They are automated test benches

Fuzzers look great on paper

2

Fuzzers look great on paper
They achieve high coverage!

2

Multiplexer

Fuzzers look great on paper
They achieve high coverage!

2

Register

Multiplexer

Fuzzers look great on paper
They achieve high coverage!

2

FSM Register

Multiplexer

Edge

Statement

Branch

Expression
Output

Fuzzers look great on paper
They find bugs!

3

ProcessorFuzz: 9 bugs

Fuzzers look great on paper
They find bugs!

3

ProcessorFuzz: 9 bugs

DifuzzRTL: 16 bugs

Fuzzers look great on paper
They find bugs!

3

ProcessorFuzz: 9 bugs

Cascade: 37 bugs

DifuzzRTL: 16 bugs

Fuzzers look great on paper
They find bugs!

3

ProcessorFuzz: 9 bugs

Cascade: 37 bugs

DifuzzRTL: 16 bugs

Fuzzers look great on paper
They find bugs!

3

Everybody gets a bug!

Creators use flashy figures to sell stories

4

4

Creators use flashy figures to sell stories

Design coverage

4

Creators use flashy figures to sell stories

Design coverage Bug detection

4

Design coverage Bug detection Input generation

Creators use flashy figures to sell stories

Fuzzer evaluation is flawed

5

Fuzzer evaluation is flawed

5

Coverage is not well suited for comparing fuzzers

M. Böhme, L. Szekeres, and J. Metzman
“On the reliability of coverage-based fuzzer …”
in ICSE 2022

L. Inozemtseva, and R. Holmes
“Coverage is not strongly correlated with test suite …”
in ICSE 2014

Fuzzer evaluation is flawed

5

Coverage is not well suited for comparing fuzzers

M. Böhme, L. Szekeres, and J. Metzman
“On the reliability of coverage-based fuzzer …”
in ICSE 2022

L. Inozemtseva, and R. Holmes
“Coverage is not strongly correlated with test suite …”
in ICSE 2014

Uneven distribution

Fuzzer evaluation is flawed

5

Coverage is not well suited for comparing fuzzers

M. Böhme, L. Szekeres, and J. Metzman
“On the reliability of coverage-based fuzzer …”
in ICSE 2022

L. Inozemtseva, and R. Holmes
“Coverage is not strongly correlated with test suite …”
in ICSE 2014

Uneven distribution Ignores propagation

Fuzzer evaluation is flawed

6

Let’s examine bug discovery

Fuzzer evaluation is flawed

6

Let’s examine bug discovery

Bug Device Description

1 BlackParrot Non-boxed single-precision floating point …

2 BlackParrot Read-after-Write dependencies on fcsr.fflags …

3 BlackParrot When mstatus.FS is not set and the fcsr is …

4 BlackParrot The 2 low-bits of sepc CSR are not ...

5 BlackParrot No exception raised when writing certain ..

6 BlackParrot Reading zero register, following specific …

7 Dromajo PMP checks are performed, and raise …

8 Rocket & BOOM Instruction page fault not raised when …

9 BOOM mstatus.FS is gratuitously set to dirty.

Fuzzer evaluation is flawed

6

Let’s examine bug discovery

Bug Device Description

1 BlackParrot Non-boxed single-precision floating point …

2 BlackParrot Read-after-Write dependencies on fcsr.fflags …

3 BlackParrot When mstatus.FS is not set and the fcsr is …

4 BlackParrot The 2 low-bits of sepc CSR are not ...

5 BlackParrot No exception raised when writing certain ..

6 BlackParrot Reading zero register, following specific …

7 Dromajo PMP checks are performed, and raise …

8 Rocket & BOOM Instruction page fault not raised when …

9 BOOM mstatus.FS is gratuitously set to dirty.

Never Fuzzed

Flawed evaluation fractures the field

7

Flawed evaluation fractures the field

7

What do researchers think of coverage?

Flawed evaluation fractures the field

7

J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee
“Difuzzrtl: Differential fuzz testing to find cpu bugs”
in S&P 2021

What do researchers think of coverage?

EffectiveCheap

Flawed evaluation fractures the field

7

F. Solt, K. Ceesay-Seitz, and K. Razavi
“Cascade: CPU Fuzzing via Intricate Program Generation”
in USENIX Security 2024

J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee
“Difuzzrtl: Differential fuzz testing to find cpu bugs”
in S&P 2021

What do researchers think of coverage?

IneffectiveExpensiveEffectiveCheap

Flawed evaluation fractures the field

7

F. Solt, K. Ceesay-Seitz, and K. Razavi
“Cascade: CPU Fuzzing via Intricate Program Generation”
in USENIX Security 2024

J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee
“Difuzzrtl: Differential fuzz testing to find cpu bugs”
in S&P 2021

What do researchers think of coverage?

IneffectiveExpensiveEffectiveCheap

Contradiction!

Encarsia: Evaluating CPU Fuzzers
via Automatic Bug Injection

8

How do bugs arise in the real world?

9

How do bugs arise in the real world?
We survey 1672 pull requests

9

assign illegal_csr_insn_o =
 illegal_csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;

Accessing a debug register outside of debug mode sets
illegal_csr, but the CSR write still happened. This
change ensures that if an illegal CSR instruction is
signaled, the CSR write is blocked.

#399 Prevents illegal CSR writes

How do bugs arise in the real world?
We survey 1672 pull requests

9

assign illegal_csr_insn_o =
 illegal_csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;

Accessing a debug register outside of debug mode sets
illegal_csr, but the CSR write still happened. This
change ensures that if an illegal CSR instruction is
signaled, the CSR write is blocked.

#399 Prevents illegal CSR writes Source Conditionals Mix-ups Other

Ibex 17 14 0

CVA6 22 11 0

Rocket 8 41 0

BOOM 13 33 0

DAC19 2 2 0

DAC21 4 10 0

Total 66 111 0

All 177 bugs fall into 2 categories

How do bugs arise in the real world?
Signal Mix-ups

10

assign illegal_csr_insn_o =
 illegal_csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;

Confusing similar signals

Definition

How do bugs arise in the real world?
Signal Mix-ups

10

assign illegal_csr_insn_o =
 illegal_csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;

illegal_csr = 1’b0;
case (csr_addr_i)
 CSR_MSTATUS: csr_rdata_int = mstatus_q
 CSR_DCSR: begin
 csr_rdata_int = dcsr_q;
++ illegal_csr = ~debug_mode_i;
 end
 default: illegal_csr = 1’b1;
endcase

Broken Conditionals

Confusing similar signals Mishandling corner cases

Definition Definition

How do we inject bugs?
Signal Mix-ups

11

assign illegal_csr_insn_o =
 illegal_csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;

Intermediate representation

illegal_csr_priv

illegal_csr csr_we_int
csr_wreq

How do we inject bugs?
Signal Mix-ups

11

Intermediate representation

illegal_csr_priv

illegal_csr csr_we_int
csr_wreq

assign illegal_csr_insn_o =
 illegal_csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;
++ csr_wreq & ~illegal_csr_priv & instr_new_id_i;

How do we inject bugs?
Signal Mix-ups

11

illegal_csr = 1’b0;
case (csr_addr_i)
 CSR_MSTATUS: csr_rdata_int = mstatus_q
 CSR_DCSR: begin
 csr_rdata_int = dcsr_q;
++ illegal_csr = ~debug_mode_i;
 end
 default: illegal_csr = 1’b1;
endcase

Broken Conditionals

Intermediate representation

illegal_csr_priv

illegal_csr csr_we_int
csr_wreq

CSR_DPC

1'b1

~debug_mode_i
illegal_csr

CSR_MSTATUS

1'b0

Intermediate representation

assign illegal_csr_insn_o =
 illegal_csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;
++ csr_wreq & ~illegal_csr_priv & instr_new_id_i;

How do we inject bugs?
Signal Mix-ups

11

Broken Conditionals

Intermediate representation

illegal_csr_priv

illegal_csr csr_we_int
csr_wreq

Intermediate representation

CSR_DPC

1'b1

~debug_mode_i
illegal_csr

CSR_MSTATUS

1'b0

illegal_csr = 1’b0;
case (csr_addr_i)
 CSR_MSTATUS: csr_rdata_int = mstatus_q
 CSR_DCSR: begin
 csr_rdata_int = dcsr_q;
-- illegal_csr = ~debug_mode_i;
 end
 default: illegal_csr = 1’b1;
endcase

assign illegal_csr_insn_o =
 illegal_csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;
++ csr_wreq & ~illegal_csr_priv & instr_new_id_i;

What about ineffective transformations?
We formally verify architectural observability

12

What about ineffective transformations?
We formally verify architectural observability

12

Buggy Original

Match?

What about ineffective transformations?
We formally verify architectural observability

12

Buggy

Match?

Original

Which fuzzing techniques actually work?

13

Ibex
Rocket

BOOM

We generate EnCorpus

Which fuzzing techniques actually work?

14

DifuzzRTL ProcessorFuzz

We must test each technique in isolation

Cascade

Is instruction-granular detection worth it?

15

ProcessorFuzzDifuzzRTL

Is instruction-granular detection worth it?

15

DifuzzRTL ProcessorFuzz

Is instruction-granular detection worth it?

16

Rocket

Broken Conditionals
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✘✘✘✘✘✓ ✓ ✘✘✓ ✘✓ ✘✘✓
PFuzz ✘✘✘✘✘✓ ✓ ✘✘✓ ✘✓ ✘✘✓

Signal Mix-ups
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✘✓ ✓ ✓ ✘✘✘✘✘✘✘✘✓ ✘✓
PFuzz ✘✓ ✓ ✓ ✘✘✘✘✘✘✘✘✓ ✘✓

BOOM

Broken Conditionals
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✓
PFuzz ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✓

Signal Mix-ups
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✓ ✓ ✘✓ ✓ ✘✘✓ ✘✓ ✓ ✓ ✘✘✓
PFuzz ✓ ✓ ✘✓ ✓ ✘✘✓ ✘✓ ✓ ✓ ✘✘✓

Is instruction-granular detection worth it?

16

Rocket

Broken Conditionals
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✘✘✘✘✘✓ ✓ ✘✘✓ ✘✓ ✘✘✓
PFuzz ✘✘✘✘✘✓ ✓ ✘✘✓ ✘✓ ✘✘✓

Signal Mix-ups
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✘✓ ✓ ✓ ✘✘✘✘✘✘✘✘✓ ✘✓
PFuzz ✘✓ ✓ ✓ ✘✘✘✘✘✘✘✘✓ ✘✓

BOOM

Broken Conditionals
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✓
PFuzz ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✓

Signal Mix-ups
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✓ ✓ ✘✓ ✓ ✘✘✓ ✘✓ ✓ ✓ ✘✘✓
PFuzz ✓ ✓ ✘✓ ✓ ✘✘✓ ✘✓ ✓ ✓ ✘✘✓

Insight 1:
Finer detection granularity does not yield better results.

Are hardware coverage metrics effective?

17

DifuzzRTL ProcessorFuzz

Are hardware coverage metrics effective?

18

Rocket

Broken Conditionals
Cover. 1 2 3 4 5 6 7 8 9 A B C D E F
None ✘✘✘✘✘✓ ✓ ✘✘✓ ✘✓ ✘✘✓
DifRTL ✘✘✘✘✘✓ ✓ ✘✘✓ ✘✓ ✘✘✓
PFuzz ✘✘✘✘✘✓ ✓ ✘✘✓ ✘✓ ✘✘✓

Signal Mix-ups
Cover. 1 2 3 4 5 6 7 8 9 A B C D E F
None ✘✓ ✓ ✓ ✘✘✘✘✘✘✘✘✓ ✘✓
DifRTL ✘✓ ✓ ✓ ✘✘✘✘✘✘✘✘✓ ✘✓
PFuzz ✘✓ ✓ ✓ ✘✘✘✘✘✘✘✘✓ ✘✓

BOOM

Broken Conditionals
Cover. 1 2 3 4 5 6 7 8 9 A B C D E F
None ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✓
DifRTL ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✓
PFuzz ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✓

Signal Mix-ups
Cover. 1 2 3 4 5 6 7 8 9 A B C D E F
None ✓ ✓ ✘✓ ✓ ✘✘✓ ✘✓ ✓ ✓ ✘✘✓
DifRTL ✓ ✓ ✘✓ ✓ ✘✘✓ ✘✓ ✓ ✓ ✘✘✓
PFuzz ✓ ✓ ✘✓ ✓ ✘✘✓ ✘✓ ✓ ✓ ✘✘✓

Are hardware coverage metrics effective?

18

Rocket

Broken Conditionals
Cover. 1 2 3 4 5 6 7 8 9 A B C D E F
None ✘✘✘✘✘✓ ✓ ✘✘✓ ✘✓ ✘✘✓
DifRTL ✘✘✘✘✘✓ ✓ ✘✘✓ ✘✓ ✘✘✓
PFuzz ✘✘✘✘✘✓ ✓ ✘✘✓ ✘✓ ✘✘✓

Signal Mix-ups
Cover. 1 2 3 4 5 6 7 8 9 A B C D E F
None ✘✓ ✓ ✓ ✘✘✘✘✘✘✘✘✓ ✘✓
DifRTL ✘✓ ✓ ✓ ✘✘✘✘✘✘✘✘✓ ✘✓
PFuzz ✘✓ ✓ ✓ ✘✘✘✘✘✘✘✘✓ ✘✓

BOOM

Broken Conditionals
Cover. 1 2 3 4 5 6 7 8 9 A B C D E F
None ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✓
DifRTL ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✓
PFuzz ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✓

Signal Mix-ups
Cover. 1 2 3 4 5 6 7 8 9 A B C D E F
None ✓ ✓ ✘✓ ✓ ✘✘✓ ✘✓ ✓ ✓ ✘✘✓
DifRTL ✓ ✓ ✘✓ ✓ ✘✘✓ ✘✓ ✓ ✓ ✘✘✓
PFuzz ✓ ✓ ✘✓ ✓ ✘✘✓ ✘✓ ✓ ✓ ✘✘✓

Insight 2:
Coverage metrics do not effectively guide fuzzers.

Does program generation play a role?

19

DifuzzRTL Cascade

Does program generation play a role?

20

Rocket

Broken Conditionals
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✘✘✘✘✘✓ ✓ ✘✘✓ ✘✓ ✘✘✓
Cascade ✘✓ ✘✘✘✓ ✘✘✘✘✘✓ ✘✘✓

Signal Mix-ups
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✘✓ ✓ ✓ ✘✘✘✘✘✘✘✘✓ ✘✓
Cascade ✓ ✓ ✓ ✓ ✘✓ ✘✘✘✘✘✘✓ ✘✓

BOOM

Broken Conditionals
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✓
Cascade ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✘

Signal Mix-ups
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✓ ✓ ✘✓ ✓ ✘✘✓ ✘✓ ✓ ✓ ✘✘✓
Cascade ✓ ✓ ✘✘✘✓ ✓ ✓ ✓ ✓ ✓ ✘✘✓ ✓

Does program generation play a role?

20

Rocket

Broken Conditionals
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✘✘✘✘✘✓ ✓ ✘✘✓ ✘✓ ✘✘✓
Cascade ✘✓ ✘✘✘✓ ✘✘✘✘✘✓ ✘✘✓

Signal Mix-ups
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✘✓ ✓ ✓ ✘✘✘✘✘✘✘✘✓ ✘✓
Cascade ✓ ✓ ✓ ✓ ✘✓ ✘✘✘✘✘✘✓ ✘✓

BOOM

Broken Conditionals
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✓
Cascade ✓ ✓ ✘✘✘✘✓ ✘✘✘✓ ✓ ✘✘✘

Signal Mix-ups
Fuzzer 1 2 3 4 5 6 7 8 9 A B C D E F
DifRTL ✓ ✓ ✘✓ ✓ ✘✘✓ ✘✓ ✓ ✓ ✘✘✓
Cascade ✓ ✓ ✘✘✘✓ ✓ ✓ ✓ ✓ ✓ ✘✘✓ ✓

Insight 3:
Program generation is the primary driver of finding bugs.

Bug Detected Module

5 ✓ UOPCodeFDivDec …

6 ✘ DivUnit

7 ✘ MulDiv

8 ✓ IntToFP

9 ✘ PipelinedMulUnit

10 ✓ ALU

11 ✓ RegisterReadDecode

DifuzzRTL

Encarsia helps detect misconfigurations

21

Bug Detected Module

5 ✓ UOPCodeFDivDec …

6 ✘ DivUnit

7 ✘ MulDiv

8 ✓ IntToFP

9 ✘ PipelinedMulUnit

10 ✓ ALU

11 ✓ RegisterReadDecode

def __init__(self, isa='RV64G'):
 isas = []
 if 'I' in isa:
 isas += ['rv32i’]
 if 'M' in isa:
 isas += ['rv32m’]
 if 'A' in isa:
 isas += ['rv32a’]
 if 'F' in isa:
 isas += ['rv32f’]
 if 'G' in isa:
-- isas = ['rv32i', 'rv32m', 'rv32a', 'rv32f']

DifuzzRTL

Encarsia helps detect misconfigurations

21

Forgets the M extension

Bug Detected Module

5 ✓ UOPCodeFDivDec …

6 ✘ DivUnit

7 ✘ MulDiv

8 ✓ IntToFP

9 ✘ PipelinedMulUnit

10 ✓ ALU

11 ✓ RegisterReadDecode

def __init__(self, isa='RV64G'):
 isas = []
 if 'I' in isa:
 isas += ['rv32i’]
 if 'M' in isa:
 isas += ['rv32m’]
 if 'A' in isa:
 isas += ['rv32a’]
 if 'F' in isa:
 isas += ['rv32f’]
 if 'G' in isa:
-- isas = ['rv32i', 'rv32m', 'rv32a', 'rv32f']

DifuzzRTL

Encarsia helps detect misconfigurations

21

Insight 4:
Fuzzers do not test the entire ISA

Forgets the M extension

Encarsia helps detect flaws

22

Cascade
Bug Detected Module

1 ✓ IssueSlot
2 ✓ Arbiter_16

3 ✘ DivSqrtRecF64_mul …

4 ✘ DivSqrtRecF64_mul …

5 ✘ UOPCodeFDivDec …

6 ✓ DivUnit

7 ✓ MulDiv

8 IntToFP

Encarsia helps detect flaws

22

Cascade
Bug Detected Module

1 ✓ IssueSlot
2 ✓ Arbiter_16

3 ✘ DivSqrtRecF64_mul …

4 ✘ DivSqrtRecF64_mul …

5 ✘ UOPCodeFDivDec …

6 ✓ DivUnit

7 ✓ MulDiv

8 IntToFP

Excludes whole instructions

if cpu == "cva6":
 probability["fsqrt.d"] = 0

 if not tolerate_cva6_division():
 probability["fdiv.d"] = 0

 if not tolerate_cva6_single_precision():
 probability["fsqrt.s"] = 0
 probability["fdiv.s"] = 0

if cpu == "boom":
++ probability["fsqrt.d"] = 0
++ probability["fdiv.d"] = 0

Encarsia helps detect flaws

22

Cascade
Bug Detected Module

1 ✓ IssueSlot
2 ✓ Arbiter_16

3 ✘ DivSqrtRecF64_mul …

4 ✘ DivSqrtRecF64_mul …

5 ✘ UOPCodeFDivDec …

6 ✓ DivUnit

7 ✓ MulDiv

8 IntToFP

Insight 5:
Filtering mechanisms hinder the discovery of further bugs

if cpu == "cva6":
 probability["fsqrt.d"] = 0

 if not tolerate_cva6_division():
 probability["fdiv.d"] = 0

 if not tolerate_cva6_single_precision():
 probability["fsqrt.s"] = 0
 probability["fdiv.s"] = 0

if cpu == "boom":
++ probability["fsqrt.d"] = 0
++ probability["fdiv.d"] = 0

Excludes whole instructions

Encarsia injects complex bugs

23

Encarsia injects complex bugs

23

BOOM Broken Conditional #3

if (reset) begin
 enq_ptr <= 3'h0;
end else if (do_enq) begin
 if (wrap) begin
 enq_ptr <= 3’h0;
++ end
end else begin
 enq_ptr <= enq_ptr + 1;
-- end
end

Encarsia injects complex bugs

23

BOOM Broken Conditional #3

if (reset) begin
 enq_ptr <= 3'h0;
end else if (do_enq) begin
 if (wrap) begin
 enq_ptr <= 3’h0;
++ end
end else begin
 enq_ptr <= enq_ptr + 1;
-- end
end

Buffer

FPU ALU

Registers

Buffer between FPU and GRs

Encarsia injects complex bugs

23

BOOM Broken Conditional #3

if (reset) begin
 enq_ptr <= 3'h0;
end else if (do_enq) begin
 if (wrap) begin
 enq_ptr <= 3’h0;
++ end
end else begin
 enq_ptr <= enq_ptr + 1;
-- end
end

Buffer

FPU ALU

Registers

Buffer between FPU and GRs

2.45

Encarsia injects complex bugs

23

BOOM Broken Conditional #3

if (reset) begin
 enq_ptr <= 3'h0;
end else if (do_enq) begin
 if (wrap) begin
 enq_ptr <= 3’h0;
++ end
end else begin
 enq_ptr <= enq_ptr + 1;
-- end
end

Buffer

ALU

Registers

FPU

Buffer between FPU and GRs

Encarsia injects complex bugs

23

BOOM Broken Conditional #3

if (reset) begin
 enq_ptr <= 3'h0;
end else if (do_enq) begin
 if (wrap) begin
 enq_ptr <= 3’h0;
++ end
end else begin
 enq_ptr <= enq_ptr + 1;
-- end
end

Buffer

ALU

Registers

Buffer between FPU and GRs

FPU

Encarsia injects complex bugs

23

BOOM Broken Conditional #3

if (reset) begin
 enq_ptr <= 3'h0;
end else if (do_enq) begin
 if (wrap) begin
 enq_ptr <= 3’h0;
++ end
end else begin
 enq_ptr <= enq_ptr + 1;
-- end
end

ALU

Registers

Buffer between FPU and GRs

Insight 6:
Fuzzers often miss subtle bugs from microarchitectural corner cases

Buffer

FPU

Conclusion
§ Hardware fuzzing is rife with false theories

Conclusion
§ Hardware fuzzing is rife with false theories
§ Accurate evaluation ensures transparency

Conclusion
§ Hardware fuzzing is rife with false theories
§ Accurate evaluation ensures transparency
§ Reveals insights into improving future fuzzers

