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Fuzzers look great on paper
They find bugs!

Everybody gets a bug!

Cascade: 37 bugs

DifuzzRTL: 16 bugs

ProcessorFuzz: 9 bugs
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“Coverage is not strongly correlated with test suite ...” “On the reliability of coverage-based fuzzer ...”
in ICSE 2014 in ICSE 2022
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L. Inozemtseva, and R. Holmes M. Bohme, L. Szekeres, and J. Metzman

“Coverage is not strongly correlated with test suite ...” “On the reliability of coverage-based fuzzer ...”
in ICSE 2014 in ICSE 2022

Ignores propagation

Uneven distribution
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Let’s examine bug discovery

Bug | Device Description
1 BlackParrot Non-boxed single-precision floating point ...
2 BlackParrot Read-after-Write dependencies on fcsr.fflags ...
3 | BlackParrot When mstatus.FS is not set and the fcsris ...
4 BlackParrot The 2 low-bits of sepc CSR are not ...
5 BlackParrot No exception raised when writing certain ..
6 BlackParrot Reading zero register, following specific ...
7 Dromajo PMP checks are performed, and raise ...
8 Rocket & BOOM | Instruction page fault not raised when ...
9 BOOM mstatus.FS is gratuitously set to dirty.
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BOOM

Non-boxed single-precision floating point ...

Read-after-Write dependencies on fcsr.fflags ...

When mstatus.FS is not set and the fcsris ...

The 2 low-bits of sepc CSR are not ...
No exception raised when writing certain ..

Reading zero register, following specific ...

PMP checks are performed, and raise ...
Instruction page fault not raised when ...

mstatus.FS is gratuitously set to dirty.
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F. Solt, K. Ceesay-Seitz, and K. Razavi
“Cascade: CPU Fuzzing via Intricate Program Generation”

J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee
“Difuzzrtl: Differential fuzz testing to find cpu bugs”

in S&P 2021 in USENIX Security 2024
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How do bugs arise in the real world?
We survey 1672 pull requests

#399 Prevents illegal CSR writes

Accessing a debug register outside of debug mode sets
illegal_csr, but the CSR write still happened. This
change ensures that if an illegal CSR instruction is
signaled, the CSR write is blocked.

assign illegal_csr_insn_o =
illegal_csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;




How do bugs arise in the real world?
We survey 1672 pull requests

#399 Prevents illegal CSR writes Source | Conditionals Mix-ups Other
Ibex 17 14 o)
I11egal cor, but the CoR urite Still happencd. This CVA6 22 11 0
lgnaled, the CSh urite 15 bloked. o Rocket 8 4 0
BOOM 13 33 o)
DAC19 2 2 o
DAC21 4 10 o
assign illegal _csr_insn_ o =
illegal csr | illegal csr_priv; Total 66 111 0

assign csr_we_int =
- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;

All 177 bugs fall into 2 categories



How do bugs arise in the real world?
Signal Mix-ups

assign illegal_csr_insn_o =
illegal_csr | illegal_csr_priv;

assign csr_we_int =
- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;
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How do bugs arise in the real world?
Signal Mix-ups Broken Conditionals

illegal csr = 1°bO;
] . ) _ case (csr_addr_i)
a551gn 111egal_csr71nsn_o - . CSR_MSTATUS: csr_rdata_int = mstatus_q
illegal csr | illegal_csr_priv; CSR_DCSR: begin

csr_rdata_int = dcsr_q;
++ illegal csr = ~debug_mode_i;
end
default: illegal _csr = 1°b1;
endcase

assign csr_we_int =
- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;

Definition Definition

~

l
Confusing similar signals |—|—| Mishandling corner cases
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How do we inject bugs?
Signal Mix-ups

assign illegal_csr_insn_o =
illegal_csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_priv & instr_new_id_i;
++ csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;

Intermediate representation

illegal_csr csr_we_int

csr_wreq

illegal_csr_priv
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How do we inject bugs?
Signal Mix-ups

assign illegal_csr_insn_o =
illegal csr | illegal_csr_priv;

assign csr_we_int =
-- csr_wreq & ~illegal_csr_insn_o & instr_new_id_i;
++ csr_wreq & ~illegal_csr_priv & instr_new_id_i;

Intermediate representation

illegal_csr csr_we_int

csr_wreq

illegal_csr_priv

~debug_mode_i

Broken Conditionals

illegal csr = 1°bO;
case (csr_addr_i)
CSR_MSTATUS: csr_rdata_int = mstatus_q
CSR_DCSR: begin
csr_rdata_int = dcsr_q;
illegal csr = ~debug_mode_i;
end
default: illegal _csr = 1°b1;
endcase

Intermediate representation

illegal_csr

1'bl
CSR_MSTATUS

CSR_DPC
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illegal csr = 1°bO;
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Which fuzzing techniques actually work?

We generate EnCorpus
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Which fuzzing techniques actually work?
We must test each technique in isolation

DifuzzRTL ProcessorFuzz Cascade
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Is instruction-granular detection worth it?

DifuzzRTL ProcessorFuzz
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THERN TRERY
DifuzzRTL ProcessorFuzz
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Is instruction-granular detection worth it?

Rocket g hal Mix-ups

Fuzzer |123456789ABCDEF
DIfRTL XV VVXXXXXXXXI XYV
PFuzz [ XVVVXXXXXXXXV XV

Broken Conditionals
Fuzzer |[123456789ABCDEF
DIfRTL X X XXXV VXXV XV XXV
PFuzz XXX XXVV XXV XV XXV

BOOM

Signal Mix-ups
Fuzzer |[123456789ABCDEF
DIfRTL [V VXV VXXV XV XXV
PFuzz VIXVIVIXXVIXVSVSV XXV
Broken Conditionals
Fuzzer |[123456789ABCDEF
DIfRTL [V VX XXXV XXXV XXV

PFuzz

VIXXXXVXXXIVXXY
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Rocket  g;ohal Mix-ups BOOM  gignal Mix-ups

Fuzzer |[123456789ABCDEF Fuzzer |123456789ABCDEF
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Broken Conditionals Broken Conditionals

Fuzzer |123456789ABCDEF Fuzzer |123456789ABCDEF
DIfRTL X X XXXV VXXV XV XXV DIfRTL W VXXXXV XXXV XXV
PFuzz XXXXXVVIXXIXVXXYV PFuzz |V VXXXXVXXXIIXXYV




Are hardware coverage metrics effective?

DifuzzRTL ProcessorFuzz
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Are hardware coverage metrics effective?
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Does program generation play a role?
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Does program generation play a role?

Rocket
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Does program generation play a role?

Rocket  g;ohal Mix-ups BOOM  gignal Mix-ups

Fuzzer |[123456789ABCDEF Fuzzer |123456789ABCDEF
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Cascade WV VV VXV XXXXXXV XV Cascade [V V X XXV VYV VIV XXV

Broken Conditionals Broken Conditionals

Fuzzer |123456789ABCDEF Fuzzer |123456789ABCDEF
DIfRTL X X XXXV VXXV XV XXV DIfRTL [V VXXXXV XXXV XXV
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Encarsia helps detect misconfigurations

DifuzzRTL
Bugl Detected |Module
5 v UOPCodeFDivDec ...
6 X DivUnit
7 X MulDiv
8 v IntToFP
9 X PipelinedMulUnit
10 v ALU
11 v RegisterReadDecode
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DifuzzRTL Forgets the M extension
Bugl Detected |Module
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Encarsia helps detect misconfigurations

DifuzzRTL Forgets the M extension
Bugl Detected |Module
def __init__ (self, isa='RV64G'):
5|V |uopPcodeFDivDec ... i n isa:
6 X DivUnit PR S
d ¢ | MuDiv i man s
gl v [intToFP e
9 X PipelinedMulUnit if 'é?azn+zs£:'PVB2f,
10 \/ ALU isas = ['rv32i', 'rv32m', 'rv32a', 'rv32f']
11 v RegisterReadDecode

Insight 4:
Fuzzers do not test the entire ISA




Encarsia helps detect flaws
Cascade

W
c
«Q

Detected

Module

0O N O O A WON

v

N SN X X X L

IssueSiot

Arbiter_16
DivSqrtRecF64 mul ...
DivSqrtRecF64 mul ...

UOPCodeFDivDec ...
DivUnit
MulDiv

IntToFP
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Encarsia helps detect flaws

Cascade

W
c
«Q

Detected

Module

0O N O O A WON

v

N SN X X X L

IssueSiot

Arbiter_16
DivSqrtRecF64 mul ...
DivSqrtRecF64 mul ...

UOPCodeFDivDec...

DivUnit
MulDiv

IntToFP

Excludes whole instructions

if cpu == "cva6":
probability["fsqrt.d"] = ©

if not tolerate_cva6_division():
probability["fdiv.d"] = ©

if not tolerate_cva6_single_precision():
probability["fsqrt.s"] = ©
probability["fdiv.s"] = @

if cpu == "boom":
++ probability["fsqrt.d"] = 0
++ probability["fdiv.d"] = ©
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Encarsia helps detect flaws

Cascade

vy
c
«Q

Detected

Module

0O N O O A WON

v

N N X X X L

Insight 5:

IssueSiot

Arbiter_16
DivSqrtRecF64 mul ...
DivSqrtRecF64 mul ...

UOPCodeFDivDec...

DivUnit
MulDiv

IntToFP

Excludes whole instructions

if cpu == "cvab":
probability["fsqrt.d"] = ©

if not tolerate_cva6_division():
probability["fdiv.d"] = ©

if not tolerate_cva6_single_precision():
probability["fsqrt.s"] = ©
probability["fdiv.s"] = @

if cpu == "boom":
++ probability["fsqrt.d"] = 0
++ probability["fdiv.d"] = ©

Filtering mechanisms hinder the discovery of further bugs
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Encarsia injects complex bugs
BOOM Broken Conditional #3

if (reset) begin
eng_ptr <= 3'ho;

end else if (do_enq) begin
if (wrap) begin

eng_ptr <= 3°he;
++ end
end else begin
eng_ptr <= eng_ptr + 1;
- end
end
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Encarsia injects complex bugs

BOOM Broken Conditional #3
Buffer between FPU and GRs

if (reset) begin
eng_ptr <= 3'ho;

end else if (do_enq) begin
if (wrap) begin

enq_ptr <= 3°ho;
++ end
end else begin
eng_ptr <= eng_ptr + 1;
- end
end

Registers
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Encarsia injects complex bugs

BOOM Broken Conditional #3
Buffer between FPU and GRs

_FPU_ ALU

if (reset) begin
eng_ptr <= 3'ho;
end else if (do_enq) begin

if (wrap) begin
enq_ptr <= 3°ho;
++ end
end else begin

Buffer

eng_ptr <= eng_ptr + 1;
-- end .
end Registers

| |
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Encarsia injects complex bugs

BOOM Broken Conditional #3
Buffer between FPU and GRs

if (reset) begin
eng_ptr <= 3'ho;

end else if (do_enq) begin
if (wrap) begin

enq_ptr <= 3°ho;
++ end
end else begin
eng_ptr <= eng_ptr + 1;

Buffer

- end
end

Registers

! 1
T - —

Insight 6:
Fuzzers often miss subtle bugs from microarchitectural corner cases
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Conclusion

= Hardware fuzzing is rife with false theories
= Accurate evaluation ensures transparency
= Reveals insights into improving future fuzzers



