
Reproducing a Proof of Specification
Compliance for Ibex with Open Source Tools

Louis-Emile Ploix — lowRISC

DVClub World — October 21st 2025
louis-emile.ploix@stcatz.ox.ac.uk

Ibex

• Fully open source, owned by
lowRISC

• Vanilla RISC-V

• Simple 3-stage pipeline: fetch,
decode / execute, write back

• RVC / PMP / SMEPMP

• Used in

Prefetch
Buffer

RVC
Decoder

IF/ID
Pipe
Regs

Controller

Decoder

ALU

Mult/Div
Writeback

Load Store Unit

CSRs

ExecuteDecode

Register File

• Also going to talk about CHERIoT-Ibex a bit, which is more or less
the same, but with CHERI extensions

End-to-End Verification of ARM
®
Processors

with ISA-Formal

Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes,
Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali Zaidi

ARM Limited
110 Fulbourn Road
Cambridge, UK

first.last@arm.com

Abstract. Despite 20+ years of research on processor verification, it
remains hard to use formal verification techniques in commercial pro-
cessor development. There are two significant factors: scaling issues and
return on investment. The scaling issues include the size of modern pro-
cessor specifications, the size/complexity of processor designs, the size
of design/verification teams and the (non)availability of enough formal
verification experts. The return on investment issues include the need to
start catching bugs early in development, the need to continue catching
bugs throughout development, and the need to be able to reuse verifica-
tion IP, tools and techniques across a wide range of design styles.
This paper describes how ARM has overcome these issues in our Instruc-
tion Set Architecture Formal Verification framework “ISA-Formal.” This
is an end-to-end framework to detect bugs in the datapath, pipeline con-
trol and forwarding/stall logic of processors. A key part of making the
approach scale is use of a mechanical translation of ARM’s Architecture
Reference Manuals to Verilog allowing the use of commercial model-
checkers. ISA-Formal has proven especially e↵ective at finding micro-
architecture specific bugs involving complex sequences of instructions.
An essential feature of our work is that it is able to scale all the way from
simple 3-stage microcontrollers, through superscalar in-order processors
up to out-of-order processors. We have applied this method to 8 di↵erent
ARM processors spanning all stages of development up to release. In all
processors, this has found bugs that would have been hard for conven-
tional simulation-based verification to find and ISA-Formal is now a key
part of ARM’s formal verification strategy.
To the best of our knowledge, this is the most broadly applicable formal
verification technique for verifying processor pipeline control in main-
stream commercial use.

1 Introduction

Modern microprocessor designs apply many optimizations to improve perfor-
mance: pipelining, forwarding, issuing multiple instructions per cycle, multiple
independent pipelines, out-of-order instruction completion, out-of-order instruc-
tion issue, etc. All of these optimizations are supposed to be invisible to the

Accepted for publication at Computer Aided Verification, 2016.
The final publication is available at link.springer.com

End-to-End Verification

• Based on ARM ISA-Formal paper

End-to-End Verification

• Based on ARM ISA-Formal paper

• Compile Sail specification to
SystemVerilog module
• (Thank you to Alasdair Armstrong and

Peter Sewell at Cambridge)

Sail Specification

Combinational
SystemVerilog

Sail Compiler

End-to-End Verification

• Based on ARM ISA-Formal paper

• Compile Sail specification to
SystemVerilog module

• Maps architectural state + inputs
to next architectural state +
outputs

Combinational
SystemVerilog
Specification

Architectural
State

Instruction

Interrupts

Memory
Inputs

Memory
Outputs

Next
Architectural
State

End-to-End Verification

• Based on ARM ISA-Formal paper

• Compile Sail specification to
SystemVerilog module

• Monitor start/end of pipeline with
pipeline follower

• Check for equivalence

• But depends on internal signals!!!

Sail Specification

Combinational
SystemVerilog

Sail Compiler Ibex

Pipeline Follower

End-to-End Equivalence Test

Observational Correctness

• Novel extension to end-to-end
correctness

• Same sequence of memory
operations in same order forever

• ‘Wrap around’ end-to-end checks

Sail Specification

Combinational
SystemVerilog

Sail Compiler Ibex

Pipeline Follower

End-to-End Equivalence Check

Observational Equivalence Check

The Results
• ~20 assume-guarantee steps

• ~700 properties

• ~30 bugs

Illegal CLC load Store local violation Sealed PCC IF granules and overflow

CLC tag bit leak Memory capability layout CSetBounds lower bound check MEPCC set_address

CSeal otypes PCC.address vs. PC Illegal instruction MTVAL values User mode WFI

CJALR alignment checks CJAL vs. CJALR Memory/branch exception priorities CSR instruction problems

CSEQX memory vs. decoded Memory bounds check overflow CSpecialRW exception priorities Unspecified CJALR

MTVEC/MEPC legalisation CLC tag/perms clearing EBreak MTVAL values PMP pipeline flushing on CSR clear

CSC alignment checks MSHWM/MSHWMB updates MRet MStatus.MPRV TRVK RF write collision

CSC decoding tvec_addr alignment 16 vs. 32 register spec issues Stack EPC for CHERI NMIs

CSR clear not flushing, PMP

Comprehensive Formal Verification
of Observational Correctness

for the CHERIoT-Ibex Processor
Louis-Emile Ploix⇤, Alasdair Armstrong†, Tom Melham⇤, Ray Lin⇤, Haolong Wang⇤, and Anastasia Courtney⇤

⇤Department of Computer Science, University of Oxford
†Department of Computer Science and Technology, University of Cambridge

Abstract—The CHERI architecture equips conventional RISC
ISAs with significant architectural extensions that provide a
hardware-enforced mechanism for memory protection and soft-
ware compartmentalisation. Architectural capabilities replace
conventional integer pointers with memory addresses bound to
permissions constraining their use. We present the first com-
prehensive formal verification of a capability extended RISC-V
processor with internally ‘compressed’ capabilities — a concise
encoding of capabilities with some resemblance to floating point
number representations.

The reference model for RTL correctness is a minor variant
of the full and definitive ISA description written in the Sail
ISA specification language. This is made accessible to formal
verification tools by a prototype flow for translation of Sail
into SystemVerilog. Our verification demonstrates a methodology
for establishing that the processor always produces a stream
of interactions with memory that is identical to that specified
in Sail, when started in the same initial state. We additionally
establish liveness. This abstract, microarchitecture-independent
observational correctness property provides a comprehensive and
clear assurance of functional correctness for the CHERIoT-Ibex
processor’s observable interactions with memory.

I. INTRODUCTION

Despite being known, researched, and partially addressed
by various technical measures for almost half a century [1],
memory error exploitations remain widespread and highly
detrimental to computer security. In 2019, Microsoft reported
that 70% of all security vulnerabilities were caused by memory
safety issues [2], and out-of-bounds write is ranked number
one in the SANS CWE top 25 most dangerous software
errors [3]. The issue is particularly acute for IoT applications;
like many embedded systems, these are often developed in
memory unsafe languages, such as C or C++.

CHERI [4], [5] is an approach to enforcing memory safety
that extends conventional ISAs with hardware-supported archi-
tectural capabilities for fine-grained memory protection and
scalable software compartmentalisation. A capability can be
seen as a memory address—the hardware representation of
a software pointer—that carries additional meta-data, notably
the region of memory its address may access and certain per-
missions constraining the capability’s use. A correct hardware
implementation of an ISA with CHERI extensions ensures that
no memory accesses occur outside the permitted regions and
that the permissions are always respected.

The CHERI architecture further guarantees that capabilities
cannot be created arbitrarily, but only derived from other ca-
pabilities. The system starts with certain root capabilities from
which all other capabilities are derived—whether by a trusted
loader, the OS, a capability-aware compiler, or application
code. Moreover, a new capability can be derived from an
existing one only by narrowing the region of memory it can
access or removing permissions. This crucial non-increasing
monotonicity property is enforced by the hardware and is what
lays the solid foundation for strong memory protection and
software compartmentalisation.

Early designs for CHERI processors had high memory
overhead and memory bandwidth consumption because the
upper and lower bounds on the accessible memory region
were each represented with the same number of bits as
the address [4]. This has been replaced by a sophisticated
scheme of compressed capabilities, greatly improving the
practicality of the approach [6]. This optimisation comes at
the cost of making certain address and bounds combinations
unrepresentable, and a requirement for the microarchitecture
to implement efficient handling of compressed capabilities and
representability checks.

Processors that implement CHERI extensions to RISC-V are
an especially attractive target for hardware formal verification
research. The correctness of the RTL for a CHERI processor
is, of course, the indispensable foundation for the security
guarantees of the CHERI approach. Full and authoritative ISA
specifications written in Sail [7] are already available [8],
[9]. In some cases, Sail was used for the ISA design. The
availability of a full, well exercised, and authenticated ISA
specification eliminates a steep practical barrier to applying
formal verification.

Finally, the significant novelty of a CHERI ISA extension
and the microarchitectural optimisation of its implementa-
tion, including handling of compressed capabilities, presents
opportunities both to uncover bugs and drive developments
in methodology and tooling. The RISC-V base architecture
of a CHERI RISC-V processor also presents a relatively
tractable—though by no means trivial—formal verification
objective, where one might reasonably aim for more compre-
hensive results than only bounded properties.

ar
X

iv
:2

50
2.

04
73

8v
1

 [c
s.A

R
]

7
Fe

b
20

25

Theorem Proving

• Introduce lemmas to help the model checker

• Search for spurious k-induction traces

• Introduces lemmas to eliminate them until
none are left

• No big secrets! Just hard thought.

Property doesn’t
prove

Find spurious CEX for
k-induction for some k

Introduce general lemma
eliminating that CEX

Property proves

Open Source

• We like open source! Ibex and CHERIoT-Ibex are both open source.

• We want to make the proof reproducible for anyone, at any scale.

• We will use the fact we have well optimised our proof for k-induction, and
attempt to reproduce it with an open source model checker.

Do initial bug finding Find full proof Optimise proof (lots of
SST!)

Reproduce proof with
open source

Open Source Formal Today
• As it stands, there are not many options for open source hardware model checking:

• EBMC

• Fails on many SVA properties it considers liveness

• SBY

• Mostly a collection of Yosys scripts (the primary open source hardware
toolchain)

• Not actually a model checker, instead invokes others

• Great for small designs and simple proofs, not well optimised for our scale

• We’re going to use Yosys, as SBY does, since it’s a powerful tool, but we’ll use our
own scripts, and build our own pipeline.

Open Source Formal: The Frontend
• First problem: Parsing Ibex + the specification + the verification code

requires good SystemVerilog and SystemVerilog Assertion support.

• Options:

• read_verilog -sv — Native to Yosys, but supports very little SystemVerilog.

• verific — Requires a license.

• sv2v — No concurrent assertions.

• yosys-synlig — Doesn’t parse concurrent assertions.

• yosys-slang — Parses concurrent assertions (in Slang), but doesn’t yet
compile them to RTLIL. That’s pretty close, so let’s do that!

Formally Specifying SVA
• SVA is a difficult language to define. The specification can be hard to read.

• Therefore, we define the desired semantics of the subset of SVA we care about in
Lean 4 (a theorem proving language). We do this in terms of paths.

• With the definitions clear, implementation for this subset becomes straightforward.

def SVA.paths : SVA α -> List (SeqPath α)
| state t => [.state t 0]
| seq pre td post => pre.paths.flatMap fun a =>
 td.times.flatMap fun td =>
 post.paths.map fun b =>
 a.and (b.shift (a.end + td))
| or a b => a.paths.append b.paths
| and a b => a.paths.flatMap fun a =>
 b.paths.map fun b =>
 a.and b
| repeats a rc => rc.reps.flatMap (SeqPath.cross a.paths)
| not a => [.not (a.paths.foldl .or .false)]

def SVA.sats (p : SVA α) (pi : Trace α) : Prop :=
 p.paths.any_prop (fun p => p.sats pi)

inductive SeqPath (α : Type u)
| state : (α -> Prop) -> Nat -> SeqPath α
| or : SeqPath α -> SeqPath α -> SeqPath α
| and : SeqPath α -> SeqPath α -> SeqPath α
| not : SeqPath α -> SeqPath α

def SeqPath.sats (p : SeqPath α) (pi : Trace α)
 : Prop := match p with
| state t n => t (pi.get n)
| or a b => a.sats pi ∨ b.sats pi
| and a b => a.sats pi ∧ b.sats pi
| not a => ¬a.sats pi

Example Yosys-slang fork output
module m_assert_seq_7(input logic clk_i, input logic x, input logic y, input logic z);
 assert property(@(posedge clk_i) disable iff (~z) x |-> ##3 ~y);
endmodule

m_assert_seq_7

clk_i

A

ARGS

EN

TRG

$29
$check

x D $5
$ff Q

y

A

B
$10

$logic_and Y

z A $1
$not Y

A $11
$logic_not Y

A

B
$21

$logic_or Y

D $13
$ff Q

A

B
$14

$logic_or Y A

B
$17

$logic_or Y

D $16
$ff Q

A

B
$20

$logic_or Y
D $19

$ff Q

A

B
$28

$logic_or Y

0 D $23
$ff Q

D $25
$ff Q D $27

$ff Q

D $7
$ff Q

D $9
$ff Q

1'1

Notes on property shapes
• Properties with a lot of paths will, in the worst case, blow up in size

exponentially.

• This property takes 34 paths, each of which requires 5 nodes.

assert property(@(posedge clk_i) a ##[0:2] b ##[0:2] c ##[0:2] d ##[0:2] e);

Lowering to RTLIL ? ?Parsing

slang yosys-slang (fork) yosys

Yosys
• Once we’re in yosys, things get relatively simple (but slow).

• We do the bare minimum work to generate an smt2 file and an Aiger file.

• smt2 files contain the circuit in a form ready for an SMT solver.

• Aiger files are are topologically sorted sequences of AND and NOT
gates. They are incredibly simple and fast to manipulate

Lowering to RTLIL Mapping to AIG ?Parsing

slang yosys-slang (fork) yosys

Model Checking
• Now we can actually start checking properties, and we have a couple of options:

• yosys-smtbmc

• The standard solution, happily works with yosys smt2 files to do BMC and K-
induction. Essentially just plug in a SAT solver.

• Not very fast, and many solvers crash due to scale.

• rIC3

• A Rust implementation of BMC, K-induction and IC3. Runs on Aiger files.

• Won some competitions and even has a dedicated SAT solver.

• We target rIC3 primarily, but there’s little additional cost for us to support yosys-
smtbmc too, hence we generate smt2 files anyway.

Lowering to RTLIL Mapping to AIG CheckingParsing

slang yosys-slang (fork) yosys rIC3

Yosys is slow
• Some solutions:

• Make the specification smaller by producing more natural outputs

• Somehow makes everything worse?

• Turns out we generate a lot of junk (quadratic in the depth of SV if
statements) when doing the proc pass.

• The opt_muxtree pass (which is mean to clean up that junk) fails
because it hits an internal limit.

• Disable python support in yosys - otherwise it puts all wires in a big
global map.

Yosys is slow: Selection
• All the above gets elaboration down to about 10 minutes.

• Hence just elaborate once for all assertions, then edit the output after the
fact to remove them, or convert them to assumptions as needed.

• Still far slower than commercial (<1 minute), even for our relatively
moderate design, but manageable.

Parsing

slang yosys-slang (fork)

Lowering to RTLIL Mapping to AIG

yosys

Selection

aig-manip

Model checking

rIC3

Selection

aig-manip

Model checking

rIC3

Selection

aig-manip

Model checking

rIC3

Final Note: Debugging
• rIC3 produces witness traces in the AIW format. It’s essentially just a

sequence of bits representing the initial state and inputs.

• Yosys is meant to be able to transform this into a VCD, and it might be
able to do, but it will be incredibly slow.

• Therefore, we have a tool to do that transformation very quickly.

• In general though, debugging in gtkwave is difficult, and is best done with
an industry tool.

Automation
• Now we can prove properties at will, we need some way of orchestrating

their collective proof.

• We have a relatively straightforward python script (conductor.py) to do
that.

• It cashes proof strategies, proof algorithms, and the k used for k-
induction, etc.

• It attempts to find good combinations of properties to prove as groups
instead of individually.

Results
• Full proof for Ibex in ~40 minutes. Running in regression on all PRs. With no cache

it takes roughly a day.

• Currently requires an instant memory bound (i.e. all memory requests terminate
within 1 cycle).

Ibex RTL

Sail
Compiler

RISC-V Spec (Sail) RISC-V Spec
(SV module)

psgenProof Structure
(.proof files) Proof (SVA)

RTLtop.sv

commercial tooling

yosys

rIC3aigeraig-manip select

rIC3aig-manip select

AIW witness

rIC3aig-manip select

aiger

aiger

...

OSS-Formal

RTLILyosys-slang (fork) global clocking
(custom pass) map aigmapSV write_aiger aiger

conductor.py

parent
aiger

aig-manip simulate

gtkwave

VCD

Conclusion
• Open source formal is a thing, kind of!

• It’s very slow, difficult to work with, and very incomplete, but it’s getting
there.

• Not going to replace commercial tools any time soon, but it is nice to be
able to offer our proofs in the open, for anyone to run, and even relatively
quickly.

Thanks

• Professor Tom Melham, for his supervision and guidance.

• Alasdair Armstrong, for his work on Sail.

• Marno van der Maas, Harry Callahan, John Thompson and all the others at
lowRISC for supporting my work there.

• Kunyan Liu for his work on CHERIoT-Ibex.

• Professor Peter Sewell, Alastair Reid, Laurent Arditi and others for their
guidance and suggestions.

• Amy, friends and family for their support.

Links
• Me: louis-emile.ploix@stcatz.ox.ac.uk

• Thomas Melham: thomas.melham@balliol.ox.ac.uk

• Paper: https://arxiv.org/abs/2502.04738

• Sail: https://github.com/rems-project/sail

• CHERIoT-Ibex:

• Formal setup under dv/formal in https://github.com/microsoft/cheriot-ibex

• Sail specification on branch formal in https://github.com/lowRISC/cheriot-sail

• Ibex:

• Formal setup under dv/formal in https://github.com/lowRISC/ibex

• Sail specification on branch ibex at https://github.com/lowRISC/sail-riscv

https://arxiv.org/abs/2502.04738
https://github.com/rems-project/sail
https://github.com/microsoft/cheriot-ibex
https://github.com/lowRISC/cheriot-sail
https://github.com/lowRISC/ibex
https://github.com/lowRISC/sail-riscv

