
Louis-Emile Ploix - 04/12/2025 - DVClub Cambridge

Crossing the Model Checking/
Theorem Proving Gap for Ibex
Correctness

End-to-End

Memory

Liveness

Continuity

Observational Equivalence

Instruction
Fetch

RVC
Decoder

Controller

Decoder

Register File

ALU

Mult/Div
Writeback

Load Store Unit

CSRs

ExecuteDecode

Ibex

CHERIoT-Ibex

Prefetch
Buffer

RVC
Decoder

PCC
Checking

Controller

CHERIoT
Decoder

Decoder

CHERI Register File

ALU

Mult/Div

CHERI Ex

Writeback

CHERI Load Store Unit

CSRs

ExecuteDecode

Sail
mapping clause encdec = ITYPE(imm, rs1, rd, op)
 <-> imm @ encdec_reg(rs1) @ encdec_iop(op) @ encdec_reg(rd) @ 0b0010011

function clause execute ITYPE(imm, rs1, rd, op) = {
 let immext : xlenbits = sign_extend(imm);
 X(rd) = match op {
 ADDI => X(rs1) + immext,
 SLTI => zero_extend(bool_to_bits(X(rs1) <_s immext)),
 SLTIU => zero_extend(bool_to_bits(X(rs1) <_u immext)),
 ANDI => X(rs1) & immext,
 ORI => X(rs1) | immext,
 XORI => X(rs1) ^ immext
 };
 RETIRE_SUCCESS
}

Specification

Instruction

Interrupts

Register State

Register State

Memory Inputs

Memory Outputs

The Specification Module

IF ID/EX WB

LSU

abs

abs

compareSpec

abs
Ibex

dmem

End-to-end Correctness

Bugs

Illegal CLC load Store local violation Sealed PCC IF granules and overflow

CLC tag bit leak Memory capability layout CSetBounds lower bound check MEPCC set_address

CSeal otypes PCC.address vs. PC Illegal instruction MTVAL values User mode WFI

CJALR alignment checks CJAL vs. CJALR Memory/branch exception priorities CSR instruction problems

CSEQX memory vs. decoded Memory bounds check overflow CSpecialRW exception priorities Unspecified CJALR

MTVEC/MEPC legalisation CLC tag/perms clearing EBreak MTVAL values PMP pipeline flushing on CSR clear

CSC alignment checks MSHWM/MSHWMB updates MRet MStatus.MPRV TRVK RF write collision

CSC decoding tvec_addr alignment 16 vs. 32 register spec issues Stack EPC for CHERI NMIs

CSR clear not flushing, PMP

Quick Aside: Open Source
Ibex RTL

Sail
Compiler

RISC-V Spec (Sail) RISC-V Spec
(SV module)

psgenProof Structure
(.proof files) Proof (SVA)

RTLtop.sv

commercial tooling

yosys

rIC3aigeraig-manip select

rIC3aig-manip select

AIW witness

rIC3aig-manip select

aiger

aiger

...

OSS-Formal

RTLILyosys-slang (fork) global clocking
(custom pass) map aigmapSV write_aiger aiger

conductor.py

parent
aiger

aig-manip simulate

gtkwave

VCD

Regression

The K-Induction Game
Property Does Not Prove

Find spurious CEX for k-induction for some k

Introduce general lemma eliminating that CEX

Property Proves

psgen
Case Splitting

Idle

Idle Act

Cap WG 1

Cap WG 2

Cap WG 2D Step

WG1

WG2

WRM

WRMGD

WGM

Wait End

Cap WR

Automata

936
properties hand written properties

243

assume guarantee steps

22

Primary Limitations

• State interpretation

• Internal signals drive verification

• Missing continuity

• Instruction Fetch

Continuity

abs Spec

RISC-V Sail

compare

Ibex

Liveness
Ibex

Spec

Diverging States

Liveness

11Rdy

7

7

7

NV

30DIV1

3

DIV2

5

5

IWP

35Kill

20Sleep 5Wake Rdy

Pen and Paper Proof

As with Realise, the mathematical notation ‘Check’ is
an abstract representation of some SystemVerilog code in
our machine-executed formal verification, and we regard this
function as part of our top level statement, needing human
involvement to implement.
The top level memory properties verify directly in SVA that

for all n ≥ 0 and any t ∈ Tωµ , if oʹn ∈ O∗
µ is the sequence of

memory outputs produced by CHERIoT-Ibex as it progresses
from state en(s)n − 1 (exclusive) to en(s)n (inclusive) under
timings tn , then

Check(SpecOut(abs(en(s)n), in), tn) = oʹn . (2)

Given (2), we may now apply state matching (1) to obtain

Check(on , tn) = oʹn .

Since there are infinite s pe c _e n states, we can then con-
clude that CHERIoT-Ibex and the tightened specification will
produce precisely corresponding outputs forever, up to micro-
architecturally defined timings and under suitable implementa-
tions of Realise and Check. This is the highest level statement
one could hope to make in this context, and establishes
observational equivalence.

c) Top Level Memory Properties: We now explain how
the top level memory properties prove (2). First, we note that
our formal verification properties include a check that, for the
case of memory instructions, the memory outputs from the
compiled specification module in SystemVerilog remain stable
during the period from the clock cycle at which CHERIoT-
Ibex begins its first request (if any), up to and including the
clock cycle in which the next s pe c _e n state occurs. It is
therefore legitimate to take this stable output result from the
compiled specification as the unique reference for correctness
of the machine’s outputs during this period.
Now, for each clock cycle of the relevant sequence of

microarchitectural states, our memory correctness properties
check that if a memory request is made, it is correct with
respect to the sequence stipulated by Check(on , tn). Correct-
ness here means that in each cycle in which a memory request
is in fact made by the processor, the addresses, byte flag,
and (in the case of memory writes) data match what the
reference sequence requires. Our memory properties further
assert that the same number of memory requests are made by
the CHERIoT-Ibex core as Check(on , tn) requires. Combined,
this means that if CHERIoT-Ibex makes a request it does so
correctly, and that if it is expected to make a request is makes
one.

IX. DESIGN BUGS REVEALED

Our work revealed around 30 bugs in the CHERIoT-Ibex
design—virtually all to do with the capability extensions added
to the original Ibex core. These were reported to the design
team, confirmed, and fixed or remained under discussion
at the time of writing [40]. The bugs found range from
minor inconsistencies to exploitable, monotonicity-breaking
vulnerabilities. We focus on the latter here, as these are of

primary interest in a processor designed as a foundation for
system security.
This bug count is a conservative lower bound. We have, for

example, grouped a number of exception priority anomalies
into one ‘bug’, and don’t count new, related bugs introduced by
trying to fix an already found bug. We also note that the design
was at a relatively early state of maturity when we began
formal verification. We have no doubt that some of the bugs
revealed by formal would have surfaced under intensive design
simulation or Burch-Dill flushing [36] type formal verification.
However many of the more interesting corner case bugs are
unlikely to have been uncovered without multiple instructions
interacting with one another.
It is notable that the new Sail to SystemVerilog flow enabled

us to get verification underway fast and to start finding bugs
very quickly. Once a pipeline follower is set up bug hunting
may begin immediately under bounded verification. While we
have gone to great lengths to obtain fast converging proofs
for our verification, successful bug hunting, especially in the
early stages of developement, does not strictly require it.
The following account of some of the bugs we found is

somewhat technical and makes significant reference to the
specifics of CHERI semantics. For a full understanding of
the details, it may be useful to read in conjunction with the
main reference for compressed capabilities [6], the CHERIoT-
Ibex semantics [9], and the Microsoft CHERIoT technical
report [10].
The first vulnerability was discovered by the DTI. It allows

for the moving of the address of a capability without doing
an associated representability check. Such checks are made
whenever the address of a capability is changed. Their purpose
is to ensure that the new bounds are identical to the old ones
(since those bounds are a function of the address). If the new
bounds are different the tag of the offending capability would
be cleared. A missing representability check will be caught by
the DTI since the t op_c or and ba s e _c or values should
also be recomputed when the address is changed.
The CLoadCapImm instruction loads a capability from

memory by dereferencing another ‘authorising’ capability. The
bug arose when a specific bit of a CLoadCapImm instruction
was set which should render the instruction illegal. The
instruction would decode regardless, and yet it would still
be marked as illegal. This caused an exception to be raised,
but the load command would nonetheless continue to be
dispatched to memory. This is a bug, and the fix was to prevent
that load command being sent.
Without the fix however, if the response from memory took

long enough to arrive, the load-store unit could return the result
to the writeback stage at the same time that another instruction
was retiring. By a simple and reasonable design choice of the
writeback stage, the addresses of the illegally loaded capability
and of the capability coming from the other instruction would
be ORed-together before being sent to the register file for
storage. This means that the address of the capability changed
without any representability check being made, meaning the
bounds could move.

12

do not do this. We consider Realise to be part of our top
level correctness statement, as it needs human interpretation
to implement.

e) State Matching: With this notation introduced, we
may now prove the state matching property. We begin by
letting i ∈ I ω stand for an arbitrary infinite sequence of
architectural inputs, and t ∈ Tωµ stand for some arbitrary
infinite sequence of micro-architectural stall timings. Note that
in the verification code the entirety of i and t are, of course, not
constructed in advance. These sequences are generated lazily
by the model checker, as their elements are required.
We will say that the inputs provided to the specification for

occurrence n of a specification query are just the architectural
inputs in . Of course, in real execution of the processor
on concrete instructions, the value of in will be partially
constructed in advance. For example, the raw instruction bits
will be determined several cycles in advance and stored in the
fetch FIFO before being presented to the (RVC) compressed
instruction decoder.
We now define a ∈ SωA to be the infinite sequence of

architectural states that arise from i. We suppose that a0 is
the initial architectural state of the specification. The infinite
sequence of subsequent architectural states is then defined by

an + 1 = CSpec(an , in) for all n ≥ 0.

We now let i ʹ = Realise(i, t) be the infinite sequence
of microarchitectural inputs sent to CHERIoT-Ibex, one for
each clock cycle, that corresponds to the sequence i under
timings t. We define s ∈ Sωµ to be the infinite sequence
of microarchitectural states that arise from i ʹ , with s0 being
the reset state of the microarchitecture. We argued above that
s pe c _e n will be true infinitely often, under any sequence
of inputs to CHERIoT-Ibex. So we can define en(s) ∈ Sωµ
to be the infinite subsequence of s obtained by sampling
the sequence s whenever s pe c _e n is true, where en(s)0
is the microarchitectural state when s pe c _e n is true for
the first time. We use the notation en(s)− 1 to refer to the
microarchitectural state immediately preceding the reset state.
Finally, the state matching property says that for all n ≥ 0,

abs(en(s)n) = an . (1)

That is, every time the specification module in our verification
code is invoked on an abstraction of the current microar-
chitectural state—i.e. exactly when s pe c _e n is high—the
abstracted architectural state produced in our verification code
matches the iterated architectural state of the specification. The
proof proceeds by induction on n, as follows.
For the base case, when n is 0, then s pe c _e n is high

for the first time. We take abs(en(s)0) = a0 as an as of yet
unproven assumption.
Now suppose that our induction hypothesis (1) holds for

an arbitrary n ≥ 0 and consider microarchitectural state
en(s)n + 1 . At the previous clock cycle when s pe c _e n was
high (in state en(s)n), we stored the output of the implemented
specification module:

CSpec(abs(en)n , in) = CSpec(an , in) = an + 1

By the inductive hypothesis. Our SVA continuity properties
directly assert that abs(en(s)n + 1) is equal to this stored state.
So we have that

abs(en(s)n + 1) = an + 1

as required.

C. Observational Correctness
From state matching (1) we can conclude that under a

‘reasonable’ definition of abs the sequence of internal states of
CHERIoT-Ibex will match those of the specification infinitely
often—specifically, whenever s pe c _e n is high. But this is
not quite abstract enough for our final statement of correctness.
This is because the significance for correctness of this property
depends on the definition of abs, which is derived from
internal signals of CHERIoT-Ibex. Observational correctness
improves on this by instead formulating correctness by com-
paring only outputs. We sketch the argument below.

a) Notation: We will write O for the set of all architec-
tural outputs. These are the outputs of the Sail specification
that represent the values involved in memory events. In the
case of a memory write, the values are the address, the data
sent to memory, and certain byte enable flags. In the case of a
memory read, we have only the address and byte enable flags.
Finally, there is a value to represent ‘no memory event’. We
can then introduce the notation

SpecOut : SA × I → O

to stand for a mapping from the current architectural state and
inputs to the outputs that the specification produces.
For the implementation level, we introduce Oµ for the set

of all microarchitectural outputs. These are simply the values
on the memory output ports of CHERIoT-Ibex on each clock
cycle. These values comprise the memory request, write enable
and byte enable signals, and any data that is to be written to
memory. The correspondence between values in Oµ and values
in O is straightforwardly implemented in our SystemVerilog
code.

b) Observational Correctness: Suppose i ∈ I ω is an
arbitrary infinite sequence of architectural inputs and a ∈ SωA
is the infinite sequence of architectural states that arise from
i. We can introduce o ∈ Oω defined by

on = SpecOut (an , in) for all n ≥ 0

to stand for the corresponding infinite sequence of memory
events that would be obtained by hypothetically iterating the
specification alone.
We further define Check : O × Tµ → O∗

µ to stand for a
function that maps each architectural output in the sequence
o to the corresponding �nite sequence of microarchitectural
outputs that would have to be generated by the CHERIoT-Ibex
core to correctly enact this architectural output. This depends
on the timing information for that architectural cycle, since
requests sent to memory will only be granted after some micro-
architecturally defined time.

11

state that the specification would be executed in if it were to
be iterated.

b) Speci�cation Strengthening: It happens that
CHERIoT-Ibex allow tags to be cleared in some situations
when the specification would not. From a security perspective,
a limited deviation of this kind is reasonable and acceptable,
since the implemented behaviour is only stricter than the
specification. It does however mean that we cannot prove
direct equivalence with the Sail specification, but instead
against a hypothetical, stricter version of the specification.
We first introduce a partial ordering ⊑ : SA × SA on

architectural states. We say that for any s, s ʹ ∈ SA , s ⊑ s ʹ ,
exactly when the tag bit of any capability in a register of s
is set only if the tag bit of the capability in the same register
of s ʹ is also set, and all other state components are equal. We
would then say that s is an architectural state that is ‘at least
as strict’ as s ʹ .
We now introduce a function

clear : SA × I × SA → SA

denoting the additional tag clearing that the CHERIoT-Ibex
implementation does. Given an architectural state and an archi-
tectural input that are to be provided to the Sail specification,
along with the next architectural state that the specification
would produce for these inputs, clear produces the potentially
more strict architectural state that aligns with what the imple-
mentation would do:

∀s ∈ Sa , i ∈ I . clear(s, i, Spec(s, i)) ⊑ Spec(s, i).

That is, we will assume that clear will clear tag bits of a
state exactly when CHERIoT-Ibex would do the same. It is
important to note that clear is never explicitly defined in
SystemVerilog in our verification code. We introduce this
notation solely to facilitate our exposition of state matching.
In practice, specification alignment is implemented in the
verification code in essence by implementing ⊑ : SA × SA .
In what follows, we prove observational equivalence with

respect to the idealised specification CSpec : SA × I → SA ,
defined by

CSpec(a, i) = clear(a, i, Spec(a, i)).

Readers interested in the specifics of tag clearing in CHERIoT-
Ibex may refer to the s e t _a ddr e s s function of the
CHERIoT-Ibex RTL [17].

c) Microarchitecture and State Mapping: Mirroring the
specification notation introduced above, we write Sµ for the set
of all microarchitectural states. These are all possible assign-
ments of values to all the hardware registers in CHERIoT-Ibex.
Similarly, we write Iµ for the set of all microarchitectural
inputs. These are the values present on the input ports of
CHERIoT-Ibex. As explained in Sec. III, we verify the instruc-
tion fetch part of the processor separately, so for our purposes
here the ‘input ports’ include the instruction input signals
delivered by instruction fetch to the compressed instruction
decoder.

Following decades of common practice in the processor
verification domain [39], we introduce an abstraction func-
tion abs : Sµ → SA that maps microarchitectural state to
architectural state.

d) Temporal Alignment: In our verification, the specifi-
cation is purely combinational while the implemented pro-
cessor is pipelined, with instruction execution spread over
several clock cycles—including a dependence on the timing
of memory response. In our verification code, the implemen-
tation of the pipeline follower is what achieves a temporal
alignment [39] of the two levels. We now introduce further
(informal) notation to refer to this.
We write X ∗ and X ω for the sets of finite and infinite

sequences of elements of X respectively. If x ∈ X ω , then xi
refers to the ith element of x, where x0 is the first element.
Now define the set Tµ to represent the architectural timing

information for any given i ∈ I . An element of Tµ defines how
long memory operations will have to wait before receiving
responses and for how long the processor will have to stall
before a new instruction is received. Tµ is never represented
explicitly in SystemVerilog; it instead tracks the decisions
made by the model to provide or not provide some response
at some time.
We introduce the notation Realise : I ω × Tωµ → I ωµ to

denote the mapping from a sequence of architectural inputs, as
presented to the specification, to the corresponding sequence
of microarchitectural inputs presented to the CHERIoT-Ibex
design over successive clock cycles, using the corresponding
timing information.
It is important to note that there isn’t a simple mapping from

a single architectural input to a contiguous finite sequence of
microarchitectural inputs that correspond it. This is because
a single invocation of the Sail specification will, in general,
mark the start of running CHERIoT-Ibex for several clock
cycles. During this period of time, due to the pipelined
nature of CHERIoT-Ibex, the microarchitectural inputs for
several instructions in flight may be sampled. For example, the
memory responses, provided symbolically to the specification
as stated earlier, will arrive at the memory input ports of
the hardware in the expected clock cycles for the memory
read instruction that originated them, even though these occur
strictly after the clock cycle in which s pe c _e n next holds,
i.e. after the s pe c _e n state for the corresponding memory
read instruction, at which point another instruction may be
running in the previous pipeline stage with new instruction
bits.
For the purposes of discussing state matching, the math-

ematical notation ‘Realise’ we introduce here is an abstract
representation of the behaviour of certain SystemVerilog code
in our machine-executed verification, including elements of
the pipeline follower. This code is hand written and designed
by reading the documentation for the CHERIoT-Ibex memory
ports. We note that Realise could easily be implemented
without access to any internal signals, but doing so achieves
little more than duplicating some small section of the imple-
mentation to measure the same events. Hence for now we

10

validate the constraint as a legitimate assumption about ca-
pabilities read from memory. Doing this also has the added
benefit of strengthening the DTI, which usually increases both
the speed of its own proofs and of dependent proofs.

VIII. TOP-LEVEL OBSERVATIONAL CORRECTNESS

As outlined in Sec. III, the top-level correctness statement
for CHERIoT-Ibex is that it produces the same stream of
memory interactions as the iterated Sail specification, when
these are started in the same initial state. In this section,
we explain how this property is established, given end-to-
end instruction correctness (Sec. VI) and memory correctness
(Sec. VII). We explain the proof bottom-up.

A. Continuity Properties

In our approach to end-to-end instruction correctness, we
step the pipeline follower forward using internal processor
signals, rather than some independently-implemented control
logic. This methodology is easy to implement and powerful,
and it finds many bugs. But it does not fully verify the
processor’s pipeline control logic, which is often complex and
may contain subtle corner case bugs.
In our methodology, we therefore complement the end-to-

end proofs with certain continuity properties. These assertions
use the end-to-end results as lemmas to prove that, in essence,
each time the Sail specification is ‘queried’, the new inputs
to the specification are equivalent to (or at least as strict as,
in the case of CHERI) the outputs from the previous time the
specification was queried.
To implement this approach, we introduce a small, self-

contained piece of SystemVerilog that, when the signal
s pe c _e n is fired, will verify that the new inputs to the
compiled Sail specification—which are abstracted from the
microarchitectural state of the RTL—match the old outputs. It
also, in the same cycle, stores the new outputs to be checked
on the next iteration.
It is relatively easy to get conclusive proofs of the continuity

properties when the end-to-end correctness properties are
provided as lemmas. With some helper invariant work these
proofs can be obtained in a matter of seconds or minutes.
Successful verification of these properties extends the end-

to-end properties to show that not only does each instruction
run correctly, but that the state we finish in is the state the
next instruction begins with.

B. State Matching

The next level of our verification establishes that a certain
infinite sequence of periodically sampled states of the pro-
cessor matches the sequence of states produced by iterating
the Sail specification, when they both start in the same
initial state. In particular, consider the infinite sequence of
microarchitectural states obtained by repeatedly sampling the
processor state when s pe c _e n is high. Recall that this is
the signal that triggers an evaluation of the Sail specification.
State matching says that the abstraction of this sequence

of microarchitectural states should match the sequence of
architectural states produced by iterating the specification.
Logically, it does not matter how s pe c _e n is defined, but

in our case it is high when either an instruction moves from
the execute stage to the writeback stage, or when an interrupt
is handled. It does, however, matter that s pe c _e n is live.
If s pe c _e n is not always eventually fired then it may be
possible for CHERIoT-Ibex to deviate from the specification
without ever being checked for correctness again. Essentially,
liveness for s pe c _e n ensures that states are always eventu-
ally compared.
To prove this in our formal verification, we obtain a weak

but finite upper bound on the number of cycles between
successive s pe c _e n states. This is done under the assumption
that a processor sleep following a WFI will always be awoken
from in bounded time, and that memory response times are
bounded, as explained earlier. We proved these weak bounds
by considering the ‘path’ of microarchitectural states between
one s pe c _e n state and the next. We then prove small bounds
over the edges of each state, which are then summed into
longer paths until the full cycle is reached. The initial bounds
can take a few minutes to prove, but they compose more or
less instantly into proofs for longer paths, including s pe c _e n
to s pe c _e n.
Having established liveness, we now provide an argument

that the required state matching property holds, given the
formal SVA properties we have established in the formal
verification tool environment. We begin with some notation.

a) Speci�cation Notation: First, it is helpful to introduce
some mathematical notation to refer to the results produced by
iterating the SystemVerilog compilation of the Sail specifica-
tion. It is important to note that the meaning of this notation
is not defined mathematically or formally. It is instead an
informal notation for referring—in our argument that state
matching holds—to what the compiled specification code in
fact does.
We write SA for the set of all architectural states. These

comprise the values of all the registers defined in the Sys-
temVerilog compilation of the Sail specification, which going
forward we will refer to simply as ‘the Sail specification’.
These are the global state of execution of the Sail specification;
in the compiled code, they are inputs and outputs of the
specification SystemVerilog module.
We now let I denote the set of architectural inputs. These

are all the non-state inputs to the Sail specification. They
comprise the instruction to be executed, the interrupts, and the
responses that will come from memory, in case the instruction
input is a memory read — as discussed in Sec. VII.
We can now introduce the following notation to refer to

updates to the architectural state that are produced by the Sail
specification:

Spec : SA × I → SA

The function Spec maps one architectural state to the next.
Essentially, it produces the specified mutation to architectural
state that the (compiled) Sail computes. This output is the next

9

Dependent Types

new :: (n : Int) -> Vec n

A Formal Definition of Ibex

• - The set of micro-architectural states

• - The set of reset states

• - The set of micro-architectural inputs

• - The step function

• - The extraction function for any signal sig

μ
R ⊆ μ
iμ
Ibex : μ × iμ → μ
sig : μ × iμ → v

A Formal Definition of The Specification

• - The set of architectural states

• - The architectural reset state

• - The set of architectural inputs

• - The step function

• - The output function

A
RA

iA
Spec : A × iA → A
SpecOut : A × iA → O

Lean Spec Definition

structure Spec (v r i : Type u) where
 step : AbsState v r -> i -> AbsState v r
 routputs : RestrictedAbsState v r -> i -> List (AbsMemOp v)
 init : AbsState v r

• - The set of architectural states

• - The architectural reset state

• - The set of architectural inputs

• - The step function

• - The output function

A

RA

iA
Spec : A × iA → A

SpecOut : A × iA → O

Lean Axioms

axiom SndEn (v : @Verif αi μ va r) (s : CombIn μ va) (reach : v.ibex.reachable s.state) :
 v.mem_req_snd_d s -> v.spec_mem_en_snd s

SndEn: assert property (mem_req_snd_d |-> spec_mem_en_snd)
i.e. if Ibex had a second memory operation, then the spec did too

Lean Proof Structure
Observational
Correctness

Top Level Memory

Top Level Memory
Prefix

Continuity

FstEnd MemEn SndEn

Top Level Memory
Base

MemGnt
FstQ

MemGnt
SndQ

Spec
Stable

RealiseFstAddr

Fst
WData

SndAddr

Snd
WData

FstAddr

Fst
WData

MemGnt
FstQ

MemGnt
SndQ

We

We

Wrap
CSRs

Wrap
Reg

SpecPastEnd

SpecPast
Stable

Liveness

Liveness Liveness

Liveness

Limit
2Reqs

HasSpec
PastReg

HasSpec
PastCSRs

MemGnt
FstQInit

MemGnt
SndQInit

InfList

Ibex + Spec
definitions

+

+

Lean ObservationalCorrectness Definition

...

...

Ibex Outputs

Spec Outputs

theorem ObservationalCorrectness (v : @Verif αi μ v r) (is : InfList αi) :
 let spec_outs := (v.sample_spec is).map fun (s, i) => v.spec.outputs s i
 let ibex_outs := (v.sample is).map fun s => (v.ibex.outputs s).interpret
 ∃ (ln : InfList Nat),

(spec_outs.zip (ibex_outs.chunk ln).val).map_all fun (x, y) => x = y.flatten

Caveats

• Assumption of equivalent inputs

• Instruction fetch

• Some CSRs not missing

• Assumptions about debug mode

• Side channels

Thanks
• Professor Tom Melham, for his supervision and guidance.

• Alasdair Armstrong, for his work on Sail.

• Marno van der Maas, Harry Callahan, John Thompson and all the others at

lowRISC for supporting my work there.

• Kunyan Liu for his work on CHERIoT-Ibex.

• Professor Peter Sewell, Alastair Reid, Laurent Arditi and others for their

guidance and suggestions.

• Amy, friends and family for their support.

