
Pathfinder: Constructing Cycle-accurate
Taint Graphs for Analyzing Information Flow

Traces

Katharina Ceesay-Seitz,

Flavien Solt, Alexander Klukas, Kaveh Razavi

DVClub Cambridge

4th December 2025

Published at International Conference on Computer-Aided Design (ICCAD’25)

2

Hardware TrojansTiming
side channels

Speculative execution
attacks

Access control
violations

AI model theft

3

Hardware TrojansTiming
side channels

Speculative execution
attacks

Access control
violations

AI model theft

Information
flow (taint)
tracking
violation
trace

4

Hardware TrojansTiming
side channels

Speculative execution
attacks

Access control
violations

AI model theft

Information
flow (taint)
tracking
violation
trace

BOOM CPU - Spectre:
17 317 tainted signals

5

Hardware TrojansTiming
side channels

Speculative execution
attacks

Access control
violations

AI model theft

Information
flow (taint)
tracking
violation
trace

Pathfinder
Taint graph

BOOM CPU - Spectre:
17 317 tainted signals

6

Hardware TrojansTiming
side channels

Speculative execution
attacks

Access control
violations

AI model theft

Information
flow (taint)
tracking
violation
trace

Pathfinder
Taint graph

BOOM CPU - Spectre:
17 317 tainted signals

BOOM CPU - Spectre:
 213 signals on path

Security Properties

7

Source Sink

Information flow properties Information =

data flows

time & control flows

Security Properties

8

Source Sink

Information flow properties Information =

data flows

time & control flows

Secret Output

Secret Timing

Confidentiality

Security Properties

9

Source Sink

Information flow properties Information =

data flows

time & control flows

Secret Output

Secret Timing

Attacker
data Key

Confidentiality

Integrity

Challenges

• Plethora of information flow tracking
methods and tools

10

Challenges

• Plethora of information flow tracking
methods and tools

11

Taint tracking:
GLIFT [8], RTLIFT [9],
CellIFT [10],
RTL2MµPATH [11],
µCFI [12], MileSan [13], ...

Taint
logic

CPU

Challenges

• Plethora of information flow tracking
methods and tools

12

DUT
2

DUT
1 Self-composition /

miter:
UPEC [1-3],
AutoCC [4], LeaVe [5],
H-Houdini [6], SPV [7], ...

Taint tracking:
GLIFT [8], RTLIFT [9],
CellIFT [10],
RTL2MµPATH [11],
µCFI [12], MileSan [13], ...

Taint
logic

CPU

Verifying Information Flows with Taint Tracking

13

Taint Logic (TL)
tracks information flows

TL

DUT

DUT = Design Under Test

≠ 0 ?

Verifying Information Flows with Taint Tracking

14

Taint Logic (TL)
tracks information flows

Information flow tracking with taint logic

taint = secret or attacker-controlled

TL

DUT

≠ 0 ?

publicpublic

DUT = Design Under Test

Verifying Information Flows with Taint Tracking

15

Taint Logic (TL)
tracks information flows

Information flow tracking with taint logic

taint = secret or attacker-controlled

TL

DUT

≠ 0 ?

publicpublic

DUT = Design Under Test

16

Verifying Information Flows with Self-composition

Difference in values
between the two DUT copies
tracks information flows

DUT
2

DUT
1

== false ?

== false ?

DUT = Design Under Test

17

difference = secret or attacker-controlled

Difference in values
between the two DUT copies
tracks information flows

DUT
2

DUT
1

== false ?

== false ?

public public

DUT = Design Under Test

Verifying Information Flows with Self-composition

18

difference = secret or attacker-controlled

Difference in values
between the two DUT copies
tracks information flows

DUT
2

DUT
1

== false ?

== false ?

public public

DUT = Design Under Test

Verifying Information Flows with Self-composition

Formal Verification of Information Flows

19

Taint
logic

DUT

Taint logic

Formal SVA
properties

SVA = SystemVerilog Assertions
DUT = Design Under Test

Formal Verification of Information Flows

20

Taint
logic

DUT

Taint logic

Formal SVA
properties

Formal
model

checker

SVA = SystemVerilog Assertions
DUT = Design Under Test

Formal Verification of Information Flows

21

Taint
logic

DUT

Taint logic

Formal SVA
properties

Formal
model

checker

Formal proof

SVA = SystemVerilog Assertions
DUT = Design Under Test

Formal Verification of Information Flows

22

Taint
logic

DUT

Taint logic

Formal SVA
properties

Formal
model

checker

Formal proof

Counter
example

Waveform,
e.g., Value Change Dump (VCD)

SVA = SystemVerilog Assertions
DUT = Design Under Test

Formal Verification of Information Flows

23

DUT
2

DUT
1

Self-
composition
/ miter

Formal SVA
properties

Formal
model

checker

Formal proof

Counter
example

Waveform,
e.g., Value Change Dump (VCD)

Simulation of Information Flows

Simulation
test

benches

Test passes

Test
fails

24

Waveform,
e.g., Value Change Dump (VCD)DUT

2

DUT
1

Taint
logic

DUT

Taint logic

Self-composition
/ miter

Taint Logic Waveform Debugging

25

assign iaddr =
 ready ? ... : ... ;

always (@posedge clk)
 if (...)
 PC <= iaddr;

26

Self-composition Waveform Debugging

assign iaddr =
 ready ? ... : ... ;

always (@posedge clk)
 if (...)
 PC <= iaddr;

Proof of unification of
self-composition and taint tracking

27

 self-composition flow taint tracking flow

100% precise taint tracking flow ==> self-composition flow

Challenges

• Plethora of information flow tracking
methods and tools

• Functional verification debugging
tools show too much information

28

Pathfinder

29

• Where, when and why does information flow?

• Visualizes clock-cycle-accurate propagation of information

Pathfinder - Overview

30

Hardware Description
Language (HDL)

assign iaddr =
 ready ? ... : ... ;

always (@posedge clk)
 if (...)
 PC <= iaddr;

Temporal Information Flow Graph (TIFG)

Pathfinder - Overview

31

Hardware Description
Language (HDL)

assign iaddr =
 ready ? ... : ... ;

always (@posedge clk)
 if (...)
 PC <= iaddr;

3

Temporal Information Flow Graph (TIFG)

Taint Graph (TG)

Waveform (VCD)

Formal
model

checker

Simulation
test

benches

Pathfinder - Overview

32

Hardware Description
Language (HDL)

assign iaddr =
 ready ? ... : ... ;

always (@posedge clk)
 if (...)
 PC <= iaddr;

3

Temporal Information Flow Graph (TIFG)

Taint Graph (TG)

Waveform (VCD)

Formal
model

checker

Simulation
test

benches

Pathfinder - TIFG

33

Hardware Description
Language (HDL)

assign iaddr =
 ready ? ... : ... ;

always (@posedge clk)
 if (...)
 PC <= iaddr;

Temporal Information Flow Graph (TIFG)

[1] Yosys Open SYnthesis Suite - https://github.com/YosysHQ/yosys

TIFG
Yosys
pass

https://github.com/YosysHQ/yosys

Temporal Information Flow Graph (TIFG)

34

assign ready =
 ~stall_id & wb_ready;

assign iaddr =
 ready ? ... : ... ;

always (@posedge clk)
 if (...)
 PC <= iaddr;

stall_id wb_ready

ready

PC

iaddr

...

...

...

...

encodes potential information flows

...

...

...
...

...

...

C
...

Temporal Information Flow Graph (TIFG)

35

stall_id wb_ready

ready

PC

iaddr

C

C

...

...

...

...

encodes potential information flows

C (control) = implicit information flow

...C

...

assign ready =
 ~stall_id & wb_ready;

assign iaddr =
 ready ? ... : ... ;

always (@posedge clk)
 if (...)
 PC <= iaddr;

...
C

...

...

Temporal Information Flow Graph (TIFG)

36

stall_id wb_ready

ready

PC

iaddr

1C, 0

0 0

C, 0

1
1

...

...

...

...1

encodes potential information flows

C (control) = implicit information flow

Nr. = clock cycle delay

...C, 0

1
...

C, 1
...

assign ready =
 ~stall_id & wb_ready;

assign iaddr =
 ready ? ... : ... ;

always (@posedge clk)
 if (...)
 PC <= iaddr;

...
C

...

...1

Temporal Information Flow Graph (TIFG)

37

stall_id wb_ready

ready

PC

iaddr

1C, 0

0 0

C, 0

1
1

...

...

...

...1

encodes potential information flows

C (control) = implicit information flow

Nr. = clock cycle delay

...C, 0

1
...

C, 1
...

assign ready =
 ~stall_id & wb_ready;

assign iaddr =
 ready ? ... : ... ;

always (@posedge clk)
 if (...)
 PC <= iaddr;

...
C

...

...1

Pathfinder - Overview

38

Hardware Description
Language (HDL)

assign iaddr =
 ready ? ... : ... ;

always (@posedge clk)
 if (...)
 PC <= iaddr;

3

Temporal Information Flow Graph (TIFG)

Taint Graph (TG)

Waveform (VCD)

Formal
model

checker

Simulation
test

benches

Pathfinder

39

3

Temporal Information Flow Graph (TIFG)

Taint Graph (TG)

Formal
model

checker

Simulation
test

benches

Pathfinder derives taint values
from differences in self-composed design

Pathfinder

40

Taint Graph construction
Input: waveform, TIFG, taint
source/sinks

taint sink

Signal 'PC' is first
tainted in clock cycle 3

Temporal Information Flow Graph (TIFG)

0 1 2 3 4

Pathfinder

41

stall_id wb_ready

ready

PC

iaddr

1C, 0

0 0

1
1

...

...

...1

...C, 0

1
...

C, 1
...

Taint Graph construction

Temporal Information Flow Graph (TIFG)

taint sink

C, 0

...
C, 1

...

...1

Drivers with zero delay?
No.

0 1 2 3 4

Pathfinder

42

stall_id wb_ready

ready

PC

1C, 0

0 0

1
1

...

...

...1

...C, 0

1
...

C, 1
...

Taint Graph construction

Temporal Information Flow Graph (TIFG)

taint sink

C, 0

...
C, 1

...

...1
iaddr

Drivers with 1 cycle delay?
Yes.

3

0 1 2 3 4

Pathfinder

43

Taint Graph construction
Repeat from source, intersect

Pathfinder

44

Taint Graph construction
Repeat from source, intersect

Isolated Taint Graph

Where/when did
information flow?

Flow Control Signals

45

assign ready =
 ~stall_id & wb_ready;

Why did information flow?

Flow control signal: wb_ready

Flow control condition (wb_ready == 0)
blocks information flow

3

stall_id wb_ready

ready ready

wb_ready stall_id

Flow Control Signals

46

Why did information flow?

Flow control signal: wb_ready

3

stall_id

ready

Flow control condition (wb_ready == 0)
is false

assign ready =
 ~stall_id & wb_ready;

stall_id wb_ready

ready ready

wb_ready stall_id

Results

47IFT = Information Flow Tracking, TT = Taint Tracking, SC = Self-Composition

Pathfinder supports waves of
- self-composition
- taint tracking
- simulation
- formal verification

Results

48

Number of signals that need to
be manually analyzed
is reduced by up to ~700x

Results

49

Scalable:
Graph generation in
seconds - minutes

Results

50

BOOM – Spectre:
A speculative load leaves a trace in the cache
and leaks through the
Miss Status Holding Register (MSHR)

…

…

Pathfinder

Taint Graph

17 317 tainted signals

213 nodes

Conclusion
• Unified taint tracking and self-composition

• Introduced
oGraphical aid for faster information flow violation debugging
oReduces signals that need to be manually examined by up to 700x

51

Pathfinder

Thank you! Questions?

https://comsec.ethz.ch/r
esearch/hardware-
design-security/mucfi/

Images generated with Microsoft Bing

Paper: Code:

https://github.com/coms
ec-group/mucfi

https://comsec.ethz.ch/r
esearch/hardware-
design-security/mucfi/

Images generated with Microsoft Bing

Paper: Code:

https://github.com/coms
ec-group/mucfi

https://comsec.ethz.ch/r
esearch/hardware-
design-security/mucfi/

Images generated with Microsoft Bing

Paper: Code:

https://github.com/coms
ec-group/mucfi

https://comsec.ethz.ch/r
esearch/hardware-
design-security/mucfi/

Images generated with Microsoft Bing

Paper: Code:

https://github.com/coms
ec-group/mucfi

https://comsec.ethz.ch/r
esearch/hardware-
design-security/mucfi/

Images generated with Microsoft Bing

Paper: Code:

https://github.com/coms
ec-group/mucfi

https://comsec.ethz.ch/r
esearch/hardware-
design-security/mucfi/

Images generated with Microsoft Bing

Paper: Code:

https://github.com/coms
ec-group/mucfi

https://comsec.ethz.ch/research/hardware
-design-security/pathfinder/

comsec-group/pathfinder

Code:

kceesay@ethz.ch, flavien.solt@eecs.berkeley.edu

Information:
Contact:

https://www.linkedin.com/in/katharina-ceesay-seitz-ba521087/

mailto:kceesay@ethz.ch
mailto:flavien.solt@eecs.berkeley.edu

References
[1] M. R. Fadiheh et al., "Processor Hardware Security Vulnerabilities and their Detection by Unique Program Execution Checking", DATE 2019

[2] L. Deutschmann et al., "A Scalable Formal Verification Methodology for Data-Oblivious Hardware", IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems

[3] M. S. Ali, "Security Risks in AI Accelerators: Detecting RTL Vulnerabilities to Model Theft with Formal Verification", ETS 2025

[4] M. Orenes-Vera et al., "AutoCC: Automatic Discovery of Covert Channels in Time-Shared Hardware", MICRO 2023

[5] Z. Wang, "Specification and Verification of Side-channel Security for Open-source Processors via Leakage Contracts", CCS 2023

[6] S. Dinesh, "H-Houdini: Scalable Invariant Learning", ASPLOS 2025

[7] https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-
platform/security-path-verification-app.html

[8] M. Tiwari et al., “Complete information flow tracking from the gates up,”, ASPLOS 2009

[9] A. Ardeshiricham, "Register transfer level information flow tracking for provably secure hardware design", DATE 2017

[10] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security
2022

[11] Y. Hsiao et al., "RTL2MμPATH: Multi-μPATH Synthesis with Applications to Hardware Security Verification", MICRO 2024

[12] K. Ceesay-Seitz, F. Solt, K. Razavi, "𝜇CFI: Formal Verification of Microarchitectural Control-flow Integrity", CCS 2024

[13] T. Kovats, F. Solt, K. Ceesay-Seitz, K. Razavi, "MileSan: Detecting Exploitable Microarchitectural Leakage via Differential Hardware-Software
Taint Tracking", CCS 2025

52

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/abstract/document/11049644/
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html

53

https://comsec.ethz.ch/r
esearch/hardware-
design-security/mucfi/

Images generated with Microsoft Bing

Paper: Code:

https://github.com/coms
ec-group/mucfi

BACKUP

Toolflow

54

HDL

Temporal Information Flow Graph (TIFG)
Taint Graph (TG)

NEW

[1] Yosys Open SYnthesis Suite - https://github.com/YosysHQ/yosys

[1]

HDL = Hardware Description Language
IFT = Information Flow Tracking

https://github.com/YosysHQ/yosys

CellIFT Yosys [1] pass

55

HDL RTLIL

∀ cells (flip flops,
logic cells, …):
• Duplicate* in-/outputs for taint tracking
• Connect them with cell-type dependent

taint tracking logic

*it is possible to add multiple independent taint instrumentations. Each in-/output gets a taint representation
per instrumentation.

[1] Yosys Open SYnthesis Suite - https://github.com/YosysHQ/yosys

[2] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

Taint
logic

HDL

a) State-holding
cells

b) Combinational
block

c) Gate-level
output of Yosys

[2]

https://github.com/YosysHQ/yosys

µCFI - Microarchitectural Control-flow
Integrity

Microarchitectural control flow (µCF)

Program
Counter
(PC)

0x80000004 0x80000008 0x80001000

Operand PC

ISA = Instruction Set Architecture 56

µCFI only allows
explicitly ISA specified
data dependencies
of the µCF

K. Ceesay-Seitz, F. Solt, K. Razavi, "𝜇CFI: Formal Verification of
Microarchitectural Control-flow Integrity", CCS'24

Pathfinder

57

stall_id wb_ready

ready

PC

1C, 0

0 0

1
1

...

...

...1

...C, 0

1
...

C, 1
...

Taint Graph construction

Temporal Information Flow Graph (TIFG)

taint sink

C, 0

...
C, 1

...

...1
iaddr

Drivers with zero delay?
Yes.

3

0 1 2 3 4

Toolflow

58

HDL

HDL = Hardware Description Language
IFT = Information Flow Tracking

Temporal Information Flow Graph (TIFG)
Taint Graph (TG)

NEW

[1] Yosys Open SYnthesis Suite - https://github.com/YosysHQ/yosys

[1]

https://github.com/YosysHQ/yosys

Toolflow

59

HDL

Temporal Information
Flow Graph (TIFG)

Taint Graph (TG)

[1]

Unification: Pathfinder derives taint values
from differences in self-composed designHDL = Hardware Description Language

IFT = Information Flow Tracking

NEW

	Slide 1: Pathfinder: Constructing Cycle-accurate Taint Graphs for Analyzing Information Flow Traces
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Security Properties
	Slide 8: Security Properties
	Slide 9: Security Properties
	Slide 10: Challenges
	Slide 11: Challenges
	Slide 12: Challenges
	Slide 13: Verifying Information Flows with Taint Tracking
	Slide 14: Verifying Information Flows with Taint Tracking
	Slide 15: Verifying Information Flows with Taint Tracking
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Formal Verification of Information Flows
	Slide 20: Formal Verification of Information Flows
	Slide 21: Formal Verification of Information Flows
	Slide 22: Formal Verification of Information Flows
	Slide 23: Formal Verification of Information Flows
	Slide 24: Simulation of Information Flows
	Slide 25: Taint Logic Waveform Debugging
	Slide 26
	Slide 27: Proof of unification of self-composition and taint tracking
	Slide 28: Challenges
	Slide 29: Pathfinder
	Slide 30: Pathfinder - Overview
	Slide 31: Pathfinder - Overview
	Slide 32: Pathfinder - Overview
	Slide 33: Pathfinder - TIFG
	Slide 34: Temporal Information Flow Graph (TIFG)
	Slide 35: Temporal Information Flow Graph (TIFG)
	Slide 36: Temporal Information Flow Graph (TIFG)
	Slide 37: Temporal Information Flow Graph (TIFG)
	Slide 38: Pathfinder - Overview
	Slide 39: Pathfinder
	Slide 40: Pathfinder
	Slide 41: Pathfinder
	Slide 42: Pathfinder
	Slide 43: Pathfinder
	Slide 44: Pathfinder
	Slide 45: Flow Control Signals
	Slide 46: Flow Control Signals
	Slide 47: Results
	Slide 48: Results
	Slide 49: Results
	Slide 50: Results
	Slide 51: Conclusion
	Slide 52: References
	Slide 53
	Slide 54: Toolflow
	Slide 55: CellIFT Yosys [1] pass
	Slide 56
	Slide 57: Pathfinder
	Slide 58: Toolflow
	Slide 59: Toolflow

