ETHzurich

Pathfinder: Constructing Cycle-accurate
Taint Graphs for Analyzing Information Flow
Traces

Katharina Ceesay-Seitz,
Flavien Solt, Alexander Klukas, Kaveh Razavi
DVClub Cambridge

CPPNRR

Published at International Conference on Computer-Aided Design (ICCAD’25)

SPECTRE

Timing Speculative execution ~ Hardware Trojans Access control Al model theft
side channels attacks violations

e

SPECTRE

Timing Speculative execution ~ Hardware Trojans Access control Al model theft
side channels attacks violations
Apligligiginligiph
PC_t [32ha6AT
e Information
——— flow (taint)
wew o tracking
wb_ready_t m

5t / 32h105.. { 32h4FF..) 32'h4F0.. VI O lat I O n
stall_id 1 . 1y
stall_id_t 0 t race

_44t 32'hBCDO X 32'h4FFF

=)

SPECTRE

Timing Speculative execution ~ Hardware Trojans Access control Al model theft
side channels attacks violations
Apligligiginligiph
PC_t [32ha6AT
e Information
——— flow (taint)
wew o tracking
wb_ready_t m

5t / 32h105.. { 32h4FF..) 32'h4F0.. VI O lat I O n
stall_id 1 . 1y
stall_id_t 0 t race

_44t 32'hBCDO X 32'h4FFF

BOOM CPU - Spectre:
17 317 tainted signals 4

Timing
side channels

PC_t
iaddr_t
87t
ready_t
ready
9t
whb_ready
wb_ready_t
51
stall_id
stall_id_t
_44 t

/ 32'h46A1

/32'h1B55...x32'h46A1....

/ 32'h1030...

X32h1004...

1 \

/A

/ 8hi2

[EAR\ /AR

1 \

/[32h105..) 32'h4FF. } 32h4F0..

1\ 1\

/A

32hBCDO

32h4FFF

=)

SPECTRE

Speculative execution ~ Hardware Trojans Access control Al model theft

attacks violations
Pathfinder
Information Talnt graph
flow (taint) \ wb_ready 1
tracking —
violation "o 1
trace

BOOM CPU - Spectre:
17 317 tainted signals -

=)

SPECTRE

Timing Speculative execution ~ Hardware Trojans Access control Al model theft
side channels attacks violations
Pathfinder
ok LML L LML
PC_t [32ha6AT °
e Information Taint graph
———— flow (taint) 1
9t / 8hi2 .
P Wl tracking — 1 0,1_2 2
Wbireaf:j /32'h105..X32‘thF..X32‘h4FO.. ViOlation -t 1
o~ ————=—"—— trace
44t 32hBCDO 32'h4FFF
BOOM CPU - Spectre: BOOM CPU - Spectre:

17 317 tainted signals 213 signals on path .

Security Properties

Information =

Information flow properties

/\%f}

data flows

time & control flows

Security Properties

Information =

Information flow properties

/\%ﬁ

Confidentiality Secret /\7</> Output
- Ty
/\%ﬁ :

* data flows

time & control flows

Security Properties

Information =

Information flow properties

/\%ﬁ

* data flows

time & control flows

Challenges

* Plethora of information flow tracking
methods and tools

10

Challenges

* Plethora of information flow tracking
methods and tools

CPU

Taint tracking:
GLIFT[8], RTLIFT [9],
CelllFT[10],
RTL2MuPATH [11],

uCFI[12], MileSan [13], ...

11

Cha U.e nges — Taint tracking:

cPU GLIFT [8], RTLIFT [9],
CellIFT[10],
RTL2MuPATH [11],
uCFI[12], MileSan [13], ...

* Plethora of information flow tracking
methods and tools

=1 |IDUT] E
] 1 | E Self-composition /
[TTTTI miter:
Ly (= UPEC [1-3],
E 5ol E AutoCC [4], LeaVe [5],
4 2 | E L, H-Houdini [6], SPV [7], ...
— —

12

Verifying Information Flows with Taint Tracking

E DUT E
.
g TL % #07?

Taint Logic (TL)
tracks information flows

DUT = Design Under Test

13

Verifying Information Flows with Taint Tracking

E DUT E
.
g TL % #07?

Taint Logic (TL)
tracks information flows

DUT = Design Under Test

Information flow tracking with taint logic

public
taint O

AND

taint = secret or attacker-controlled

14

Verifying Information Flows with Taint Tracking

E DUT E
.
g TL % #07?

Taint Logic (TL)
tracks information flows

DUT = Design Under Test

Information flow tracking with taint logic

public public
taint O taint 1
AND AND
0 taint

taint = secret or attacker-controlled

15

Verifying Information Flows with Self-composition

- moT E
4 1 | E
TTTTI
AL ,::@—»false?
A [ouT] E
JL2 lE =G=)—ralse

Difference in values
between the two DUT copies
tracks information flows

DUT = Design Under Test 16

Verifying Information Flows with Self-composition

(|)public

LILLL] 0 1
- oot E ‘
E 1 -
TTTTTI AND AND
LLLLLL | : y— false ?
- [ouT :él_> o 1 2
E 2 :5_’,@—»false?
ITTTTI

0 0

Difference in values
between the two DUT copies
tracks information flows

difference = secret or attacker-controlled

DUT = Design Under Test 1

Verifying Information Flows with Self-composition

(|) public 1 public
|

LILIl] 0 1 0 1
- oot E ‘ ‘ ‘
E 1 —
_:::::: —(==)—false? AND AND AND AND
= [ouT] E 1 2 1 Z
L2 :g_',_>®—>false?

TTTTT

0 0 0 1

Difference in values
between the two DUT copies
tracks information flows

difference = secret or attacker-controlled

DUT = Design Under Test 18

Formal Verification of Information Flows

Ll
E DUT E
Taint logic ,,MM}"
— |Taint] E—
A ol E= | T—u,
— >
BRRLRR Formal SVA
properties

SVA = SystemVerilog Assertions
DUT = Design Under Test

Formal Verification of Information Flows

Ll
E DUT E
Taint logic ,,MM}"
— |Taint| [E—
=1 |togic| E \
— >
BRRLRR Formal SVA
properties '

SVA = SystemVerilog Assertions
DUT = Design Under Test

Formal Verification of Information Flows

DUT

Taint logic ,,MM}"

Taint
logic

N

SVA = SystemVerilog Assertions

DUT = Design Under Test

\

Formal SVA
properties

/ Formal proof

21

Formal Verification of Information Flows

Ll
E DUT E
Taint logic ,,MM}"
— |Taint| [E— \/
A fosic) E=7 | T—u0 *’;'<:
- — Formal proof / I\ %
AL Formal SVA / * e
properties l ~,
Counter

example

/32'h4FFF...X 32'h4F0..

Waveform,
e.g., Value Change Dump (VCD)

SVA = SystemVerilog Assertions
DUT = Design Under Test

22

Formal Verification of Information Flows

[) ‘.
Nx
o o’ \ .
F\,
Formal proof {\ A
Formal SVA ~ «
Ty properties — \
— o LU L L
- outl E / Counter DUT1.PC /3218030
= — example DUT2.PC /32h1030..
— 1 f— DUT1.iaddr /32'h8030...132'h8020..
— DUT2.iaddr /32'1030...32'h1004..}
Self- HERRR DUT1.ready [7)
composition | AL |~ S T
/ miter =1 IpuT| [Waveform,
L2 = e.g., Value Change Dump (VCD)
HERRR

23

Simulation of Information Flows

I11111
E DUT E
Taint logic J,JLH,L}
- Taint| [=— \
: . >
—1 |logic] &,
— >
B
LLILLl / \ :‘eit
— ails
= |IDUT| E
1 1 | E
Self-composition ITTTT1
/ miter Lilill |::
- |ouT| £
J12|1F—
— L
HERER

/ Testpasses !

32h1B55.
/32'h1B55...X32'h1 B76..

/32'h4FFF..._32'h4F0..

Waveform,

e.g., Value Change Dump (VCD)

24

Taint Logic Waveform Debugging

assign iaddr =
ready ? ...

always (@posedge clk)
if (...)
PC <= iaddr;

/32'h1BSS..

/32'h1B55...Y32'h1B76..
 [Tent2

[32'h4FFF...

32'h4F0..

25

Self-composition Waveform Debugging

clk |

assign iaddr = DUT1.PC

ready ? ... @ ... ; DUT2.PC
always (@posedge clk) DUTH jaddr /32'h_030...X32‘h8020..
it (...) DUT2.addr /32'Mfip30..32'h1004..

PC <= iaddr;

DUT1.ready

DUT2.ready

26

Proof of unification of
self-composition and taint tracking

32'h8030..
32'h8020..
/32'h1030...
0

self-composition flow) taint tracking flow

clk |
DUT1.PC

32'h1B55.
laddr_t 32'h1B55...132'h1B76..

9.t [&htz

DUT2.PC

DUT1.iaddr

32'h1004..

DUT2.iaddr

ot 32'n4FFF...X 32'h4FO0..

1

DUT1.ready

DUT2.ready

100% precise taint tracking flow - self-composition flow

27

Challenges

Plethora of information flow tracking

methods and tools

* Functional verification debugging
tools show too much information

clk

PC_t
iaddr_t
87t
ready t
ready
9t
wb_ready
wb_ready t
ot
stall_id
stall_id t
44

/ 32'h46A1
/32'h1B55...X32'h46A1....
/ 32'h1030... {32'h1004...
A
/ 1
/ 8h12
N7 A
A
/ 32'h105.. X 32'h4FF.. X 32'h4F0..
I [W 7
/ 1
32hBCDO 32'h4FFF

28

Pathfinder

Taint entrance

Taint entrance

* Where, when and why does information flow?

* Visualizes clock-cycle-accurate propagation of information

29

Pathfinder - Overview

C0

assign iaddr =
ready ? ... : ... ;

1
’

always (@posedge clk)
if (...)
PC <= iaddr;

Hardware Description 1
Language (HDL)
Temporal Information Flow Graph (TIFG)

30

Pathfinder - Overview

) N <
- - C’ .
assign iaddr = -’ ! ok [11T LT 1L
ready ? ... 1 ... ; ’ PC_t ~ /32h1B55.,
c.17 0 , — Vs
always (@posedge clk) jaddr_t /32h1855...X32h1B76..
if (...) 9t [8&ht2
PC <= iaddr; 5t é32‘h4FFF...X 32'h4F0..
Hardware Description 1 > . ready_t / 1 \
Language (HDL) "o
Temporal Information Flow Graph (TIFG) Waveform (VCD)

> !

Taint Graph (TG)

31

Pathfinder - Overview

assign iaddr =
ready ? ...

always (@posedge clk)
if (...)
PC <= iaddr;

Hardware Description
Language (HDL)

1
’

N N
«TU U0 U U0
PC_t f /32'h1B55..
jaddr_t /32'h1B55...{32'h1B76.
9t _ [Teni

o t

Taint Graph (TG)

32

Pathfinder - TIFG

assign iaddr =
ready ? ... = ... ;

always (@posedge clk)
if (...)
PC <= iaddr;

Hardware Description
Language (HDL) Temporal Information Flow Graph (TIFG)

[1] Yosys Open SYnthesis Suite - https://github.com/YosysHQ/yosys 33

https://github.com/YosysHQ/yosys

Temporal Information Flow Graph (TIFG)

assign ready =
~stall id & wb_ready;

assign laddr =
ready ? ... : ... ;

always (@posedge clk)
if (...)
PC <= 1addr;

encodes potential information flows

34

Temporal Information Flow Graph (TIFG)

assign ready =
~stall id & wb _ready;

assign laddr =
ready ? ... : ... ;

always (@posedge clk)
if (...)
PC <= 1addr;

Ty

encodes potential information flows

C (control) = implicit information flow

35

Temporal Information Flow Graph (TIFG)

assign ready =
~stall id & wb_ready; c

assign iaddr =
ready ? ...

always (@posedge clk)
if (...)
PC <= 1addr;

encodes potential information flows
C (control) = implicit information flow

Nr. = clock cycle delay

36

Temporal Information Flow Graph (TIFG)

assign ready =
~stall id & wb_ready;

assign iaddr =
ready ? ... : ... ;

always (@posedge clk)

if (...)
PC <= 1addr;

KTy

1
wb_ready G0, ..
0
C

0

encodes potential information flows
C (control) = implicit information flow

Nr. = clock cycle delay

37

Pathfinder - Overview

. ~N e
C’ " _
assign iaddr = -’ ! ok [0 LT LT LT L
ready ? ... : ... ; : PC_t ~ [32nhiBss..
C,y 0 . ' : : ' ‘
always (@posedge clk) jaddr_t /32h1855...X32h1B76..
if (...) 9t | 8nt
PC <= iaddr; 5 [‘ ‘
Hardware Description

Language (HDL)

Taint Graph (TG)

38

N e

Taint logic trace —, Self_cﬁ;zosni) clk |_‘_J_|_|_|_|_|_|__
ek [L] LI LT LT LY _ | ourtee /3218030..
PC_t /32'h1B55.] o DUT2.PC /32'h1030..]
iaddr_t /32'h1B55...§32'h1B76.. DUT1.iaddr /32'h8030...{32'h8020..
9t /[&h12 | 2 DUT2.iaddr [3211030...{321004..
5.t 32'h4FFF..Y 32h4F0.| |DUT1 ready 1\
Temporal Information Flow Graph (TIFG) eadyt [1\ ©fourzreay [0\

\ { Pathfinder derives taint values

Pathfinder from differences in self~-composed design

!

Taint Graph (TG)

39

Pathfinder

iaddr_t /32 hiB55.(32h1B76.} Taint Graph construction
Input: waveform, TIFG, taint
source/sinks

9t / 8'h12

ot

taint sink

Signal 'PC' is first
tainted in clock cycle 3

Temporal Information Flow Graph (TIFG) N

Pathfinder

iaddr_t /32 h1B55...432h1B76.1 Taint Graph construction
9t / 8'h12

Drivers with zero delay?

taint sink

41

Temporal Information Flow Graph (TIFG)

Pathfinder

iaddr t 1 Taint Graph construction

9 Drivers with 1 cycle delay?

5t Yes.

taint sink

Gaddd -(CPC

42

Temporal Information Flow Graph (TIFG)

clk |=‘ |=| ﬁ ﬁ n
P 2" Taint Graph construction Pathfinder

iaddr_t /32'h1B55...X32'h1B76.. .
- . Repeat from source, intersect

Taint entrance

43

 —

ok | L L L L [

PGt ___["E%4 Taint Graph construction Pathfinder

jaddr_t [32h1B55...432'h1B76..)
- . Repeat from source, intersect

.. 32'h4F0..

O\O@ > Isolated Taint Graph
= == O 7

CD\%O | Where/when did
CEink> iInformation flow?

- O
O OQO

S Bwars

Taint entrance
44

Flow Control Signals

Why did information flow?

assign ready =
~stall_id & wb_ready;| Flow control signal: wb_ready

stall_id wb_ready -
@it 0 Flow control condition (wb_ready == 0)

] blocks information flow

AND

ready

45

Flow Control Signals

Why did information flow?

assign ready =
~stall_id & wb_ready;| Flow control signal: wb_ready

stall_id wb_ready -
aint 1 Flow control condition (wb_ready == 0)

] IS false

wb_ready 1
u | u .qEIl!I'

AND

taint
ready

46

Resu

ltS

Design

IFT Analysis type Graph type\ Tainted signals Signals on path Reduct. factor Clock cycles

Gen. time [s]

AES-400 [
Kronos [5]

15] Simulation Path
Formal Path

Ibex custom [5] Formal Path

Ibex small

[5] Formal Path

CVAGb6 (new trace) Simulation Path

CVAG6 [19]

Formal Bottom

BOOM [17] Simulation Path

15
48
330
164
82,920
900
17,316

19

76

89
1187
562
213

5.0
2.5
4.3
1.8
769.9
1.6
81.3

18
12
144
76
988

6.03
0.20
0.59
0.78
604.0
4.47
100.93

Pathfinder supports waves of

self-composition
taint tracking
simulation

formal verification

IFT = Information Flow Tracking, TT = Taint Tracking, SC = Self-Composition

47

Results

Design IFT Analysis type Graph type | Tainted signals Signals on path . Clock cycles Gen. time [s]
AES-400 [15] TT Simulation Path 3 . 1 6.03
Kronos [5] TT Formal Path 19 . 9 0.20
Ibex custom [5] TT Formal Path 76 . 18 0.59
Ibex small [5] TT Formal Path 89 12 0.78
CVAG6 (new trace) TT Simulation Path 1187 144 604.0
CVAG6 [19] SC Formal Bottom 562 76 4.47
BOOM [17] TT Simulation Path 213 088 100.93

Number of sighals that need to
be manually analyzed
Is reduced by up to ~700x

48

Results

Design IFT Analysis type Graph type Tainted signals Signals on path Reduct. factor Clock cycles] Gen. time [s]
AES-400 [15] TT Simulation Path 15 3 5.0 1 6.03
Kronos [5] TT Formal Path 48 19 2.5 9 0.20
Ibex custom [5] TT Formal Path 330 76 4.3 18 0.59
Ibex small [5] TT Formal Path 164 89 1.8 12 0.78
CVAG6 (new trace) TT Simulation Path 82,920 1187 769.9 144 604.0
CVAG6 [19] SC Formal Bottom 900 562 1.6 76 4.47
BOOM [17] TT Simulation Path 17,316 213 81.3 088 100.93
Scalable:

Graph generation in
seconds - minutes

49

Results

BOOM - Spectre:
A speculative load leaves a trace in the cache

and leaks through the
Miss Status Holding Register (MSHR)

Pathfinder

17 317 tainted signals

Taint Graph 213 nodes

SPECTRE

2190
2190 3570 3875 4185 _ system tile_prci_domain.tile_reset_domain.boom_tile.dcache.mshrs.io_mem_grant_bits_data 2190

2180 3570 3875 4185 _ system tile_prci_domain.tile_reset domain.boom_tile.dcache.auto_out d_bits_ data

50

CPPNER ETH-urich

Conclusion

* Unified taint tracking and self-composition

e Introduced | Pathfinder

o Graphical aid for faster information flow violation debugging
o Reduces signals that need to be manually examined by up to 700x

Thank you! Questions?

Code:

) comsec-group/pathfinder Contact:

Information:
m, https://www.linkedin.com/in/katharina-ceesay-seitz-ba521087/

https://comsec.ethz.ch/research/hardware

i 51
-d esign_security/pathfinde r/ M kceesaV@ech.Ch, fbilﬂﬂﬁﬂl@eﬁgs;bﬁtkdﬂ.ﬁ_du

mailto:kceesay@ethz.ch
mailto:flavien.solt@eecs.berkeley.edu

References

[1]M.R. Fadiheh et al., "Processor Hardware Security Vulnerabilities and their Detection by Unique Program Execution Checking", DATE 2019

[2]L. Deutschmann et al., "A Scalable Formal Verification Methodology for Data-Oblivious Hardware", |[EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems

[3]1 M. S. Ali, "Security Risks in Al Accelerators: Detecting RTL Vulnerabilities to Model Theft with Formal Verification", ETS 2025
[4]1M. Orenes-Vera et al., "AutoCC: Automatic Discovery of Covert Channels in Time-Shared Hardware", MICRO 2023

[5]1Z. Wang, "Specification and Verification of Side-channel Security for Open-source Processors via Leakage Contracts", CCS 2023

[6]1S. Dinesh, "H-Houdini: Scalable Invariant Learning", ASPLOS 2025

[7] https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-
platform/security-path-verification-app.html

[8] M. Tiwari et al., “Complete information flow tracking from the gates up,”, ASPLOS 2009
[9]1A. Ardeshiricham, "Register transfer level information flow tracking for provably secure hardware design", DATE 2017

[10] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security
2022

[11]Y. Hsiao et al., "RTL2ZMuPATH: Multi-uPATH Synthesis with Applications to Hardware Security Verification", MICRO 2024
[12] K. Ceesay-Seitz, F. Solt, K. Razavi, "uCFl: Formal Verification of Microarchitectural Control-flow Integrity", CCS 2024

[13] T. Kovats, F. Solt, K. Ceesay-Seitz, K. Razavi, "MileSan: Detecting Exploitable Microarchitectural Leakage via Differential Hardware-Software
Taint Tracking", CCS 2025

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/abstract/document/11049644/
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform/security-path-verification-app.html

Toolflow

Temporal Information Flow Graph (TIFG)
Taint Graph (TG)

TIFG Lyl| TIFG ||l Pathfinder || TG

Hardware design

Yosysi
pass

(HDL)

LILll] Execution trace with IFT information

: H DL : Self-compositon

— | Taint logic trace —, trace ——> ek [LT LT LT LT
— — ek [1L LT LT LT L DUT1.PC /32'h8oz0...
HERRE PC_t [32hasAl... O Lurarc /32h1004...
iaddr_t / 32'h1B55 (32'h46A1... DUT1.iaddr /32'h8030...32'h8020...
9t [&ht2 2 DUT2.iaddr /32h1030...Y32'h1004...

51 [32'h4FFF..\ DUT1.ready /_1_.\

ready_t [\ © |DpuT2 ready [0\

NEW

HDL = Hardware Description Language

IFT = Information Flow Tracking [1] Yosys Open SYnthesis Suite - https://github.com/YosysHQ/yosys 54

https://github.com/YosysHQ/yosys

CelllFT Yosys [1] pass

Ty CALLLLL v celis (lip flops, [2]
.ol E = RTLIL — logiccells, ...):
- —] — * Duplicate* in-/outputs for taint tracking
NTITTIT — — « Connectthem with cell-type dependent
ARARN taint tracking logic
. Q) o) 0 AY AY!
a) State-holding — > _'_,O__> -y, or *_,
cells ' ___,I>~AJFT -
b) Combinational ! el AT ‘ O N
block = o - rand } f,and,\
c) Gate-level O kg ‘klAFT ‘AfT '
output of Yosys N . - J;M_-_-_-_a_:
R T=- Al B At- Bt.

HDL

Taint
logic

*itis possible to add multiple independent taint instrumentations. Each in-/output gets a taint representation

per instrumentation.

[1] Yosys Open SYnthesis Suite - https://gith
[2] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

55

https://github.com/YosysHQ/yosys

UCFI - Microarchitectural Control-flow
Integrity

Microarchitectural control flow (UCF) UCFI only allows
___________ | explicitly ISA specified
Program data dependencies
Counter 0x80000004 0x80000008 0x80001000 of the |JCF

(PC)

W

K. Ceesay-Seitz, F. Solt, K. Razavi, "uCFl: Formal Verification of
Microarchitectural Control-flow Integrity", CCS'24

ISA = Instruction Set Architecture 56

/ —
Pathfinder

| /32'h1B55..
iaddr_t /32'h1B55...432'h1B76..
9t [8ni2

Taint Graph construction

Drivers with zero delay?
Yes.

ot

taint sink

CTeady>; ; ;@ddD

57

Temporal Information Flow Graph (TIFG)

Toolflow

Temporal Information Flow Graph (TIFG)

Taint Graph (TG)

Hardware design Pathfinder _) TG

(HDL) S e A

THIIT 7% >+ |trace with IFT information

HDL

NEW

HDL = Hardware Description Language

IFT = Information Flow Tracking [1] Yosys Open SYnthesis Suite - https://github.com/YosysHQ/yosys 58

https://github.com/YosysHQ/yosys

Toolflow

. TIFG
Hardware design
(HDL) —» YOSYSi1
pass

NEW

HDL = Hardware Description Language
IFT = Information Flow Tracking

Temporal Information
Flow Graph (TIFG)

Taint Graph (TG)

wb_ready 1

Pathfinder

Self-compositon

Taint logic trace —, trace —>

clk
PC t

JEpEREREEE
/32'h1B55..

clk
DUT1.PC /32'h8030..
DUT2.PC /32'h1030..

iaddr_t
9t
5t

/32'h1B55...{32'h1B76.,

/ 8hi2

DUT.iaddr /32'h8030...132'h8020..

DUTZ2.iaddr !32‘h1030... 532'h1 004..

|ready_t

32'h4FFF...x 32'h4FO0..
[\ e

DUT1.ready [1\

DUT2.ready / 0 \

Unification: Pathfinder derives taint values
from differences in self-composed design

59

	Slide 1: Pathfinder: Constructing Cycle-accurate Taint Graphs for Analyzing Information Flow Traces
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Security Properties
	Slide 8: Security Properties
	Slide 9: Security Properties
	Slide 10: Challenges
	Slide 11: Challenges
	Slide 12: Challenges
	Slide 13: Verifying Information Flows with Taint Tracking
	Slide 14: Verifying Information Flows with Taint Tracking
	Slide 15: Verifying Information Flows with Taint Tracking
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Formal Verification of Information Flows
	Slide 20: Formal Verification of Information Flows
	Slide 21: Formal Verification of Information Flows
	Slide 22: Formal Verification of Information Flows
	Slide 23: Formal Verification of Information Flows
	Slide 24: Simulation of Information Flows
	Slide 25: Taint Logic Waveform Debugging
	Slide 26
	Slide 27: Proof of unification of self-composition and taint tracking
	Slide 28: Challenges
	Slide 29: Pathfinder
	Slide 30: Pathfinder - Overview
	Slide 31: Pathfinder - Overview
	Slide 32: Pathfinder - Overview
	Slide 33: Pathfinder - TIFG
	Slide 34: Temporal Information Flow Graph (TIFG)
	Slide 35: Temporal Information Flow Graph (TIFG)
	Slide 36: Temporal Information Flow Graph (TIFG)
	Slide 37: Temporal Information Flow Graph (TIFG)
	Slide 38: Pathfinder - Overview
	Slide 39: Pathfinder
	Slide 40: Pathfinder
	Slide 41: Pathfinder
	Slide 42: Pathfinder
	Slide 43: Pathfinder
	Slide 44: Pathfinder
	Slide 45: Flow Control Signals
	Slide 46: Flow Control Signals
	Slide 47: Results
	Slide 48: Results
	Slide 49: Results
	Slide 50: Results
	Slide 51: Conclusion
	Slide 52: References
	Slide 53
	Slide 54: Toolflow
	Slide 55: CellIFT Yosys [1] pass
	Slide 56
	Slide 57: Pathfinder
	Slide 58: Toolflow
	Slide 59: Toolflow

