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assign iaddr = 
    ready ? ...  : ... ;

always (@posedge clk) 
   if (...)
  PC <= iaddr;
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Self-composition Waveform Debugging

assign iaddr = 
    ready ? ...  : ... ;
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   if (...)
  PC <= iaddr;
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• Where, when and why does information flow?

• Visualizes clock-cycle-accurate propagation of information
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Hardware Description 
Language (HDL)

assign iaddr = 
    ready ? ...  : ... ;

always (@posedge clk) 
   if (...)
  PC <= iaddr;
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Number of signals that need to 
be manually analyzed 
is reduced by up to ~700x
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Scalable:
Graph generation in 
seconds - minutes
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BOOM – Spectre: 
A speculative load leaves a trace in the cache 
and leaks through the 
Miss Status Holding Register (MSHR)

…

…
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Conclusion
• Unified taint tracking and self-composition

• Introduced
oGraphical aid for faster information flow violation debugging
oReduces signals that need to be manually examined by up to 700x
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HDL

Temporal Information Flow Graph (TIFG)
Taint Graph (TG)

NEW

[1] Yosys Open SYnthesis Suite - https://github.com/YosysHQ/yosys

[1] 

HDL = Hardware Description Language
IFT   = Information Flow Tracking

https://github.com/YosysHQ/yosys
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HDL RTLIL

∀ cells (flip flops, 
logic cells, …):
• Duplicate* in-/outputs for taint tracking
• Connect them with cell-type dependent 

taint tracking logic

*it is possible to add multiple independent taint instrumentations. Each in-/output gets a taint representation 
per instrumentation.

[1] Yosys Open SYnthesis Suite - https://github.com/YosysHQ/yosys

[2] F. Solt, B. Gras, K. Razavi, "CELLIFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL", USENIX Security 2022

Taint
logic

HDL

a) State-holding 
cells

b) Combinational 
block

c) Gate-level 
output of Yosys

[2]

https://github.com/YosysHQ/yosys


µCFI - Microarchitectural Control-flow 
Integrity

Microarchitectural control flow (µCF)

Program
Counter 
(PC)

0x80000004 0x80000008 0x80001000

Operand PC

ISA = Instruction Set Architecture 56

µCFI only allows 
explicitly ISA specified 
data dependencies 
of the µCF

K. Ceesay-Seitz, F. Solt, K. Razavi, "𝜇CFI: Formal Verification of 
Microarchitectural Control-flow Integrity", CCS'24
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HDL

HDL = Hardware Description Language
IFT   = Information Flow Tracking

Temporal Information Flow Graph (TIFG)
Taint Graph (TG)

NEW

[1] Yosys Open SYnthesis Suite - https://github.com/YosysHQ/yosys

[1] 

https://github.com/YosysHQ/yosys
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HDL

Temporal Information 
Flow Graph (TIFG)

Taint Graph (TG)

[1] 

Unification: Pathfinder derives taint values 
from differences in self-composed designHDL = Hardware Description Language

IFT   = Information Flow Tracking

NEW
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