This document gives an overview of the formal verification training course. It is split into 2 courses:

- A 2-day "Bootcamp": an introduction to writing and proving basic properties and how they can be used to verify a complete block or used alongside simulation-based verification.
- A 1-day "Advanced": effective use of writing and for formal verification and proving them, and how to

Although the course will not focus on any particular tool, a tool will be used to demonstrate and practise the concepts introduced during the day (those parts of the course are highlighted in yellow). Example designs will be provided but students will have the opportunity to share designs in advance that can be used during the course (those parts are highlighted in green).

2-day Bootcamp

Day 1	
9.00	1 Introduction
	 1.1 Writing Basic System Verilog Assertions Introduction to the language The main combinatorial language constructs (syntax and semantics) Constraints and properties Examples of constraints Reading and understanding Writing from fresh Examples of properties
	 Reading and understanding Writing from froch
	o writing from fresh
	1.2 Writing properties for formal vs. simulation
10.00	1.3 Proving a basic property
11.00	 Using a tool to prove a basic property on a real design (e.g. FIFO or a student example design) Break
11.30	2 Advanced SVA
	 2.1 Writing Complex System Verilog Assertions The main sequential language constructs (syntax and semantics) Examples of sequential constraints Reading and understanding Writing from fresh Examples of sequential properties Reading and understanding Writing from fresh
	2.2 Proving a complex property
	 Using a tool to prove a complex property on a real design (or a student example design) Interpreting the three possible outcomes: Proved Earled Upproven
13.00	Lunch
14.00	3 Debugging a failing property
	 Using a tool to debug a failing property on a real design (or a student example design)

15.30	Break
16.00	4 Formal metrics
	Measuring coverage and completeness
	 Measuring coverage with a particular tool on a real design (or a student example design)
17.00	End
Day 2	
9.00	5 Full formal verification of a block
	• Developing constraints for a real design (or a student example design)
	 Over constraint
	 Under constraint
	 Determining a "full" set of properties
	 Run the constraints and properties using the tool on a real design (or a student example design)
13.00	Lunch
14.00	6 Formal in the design flow
	6.1 Formal verification applications or "apps"
	• What are the main formal verification apps (e.g. X propagation) and why are they useful
	Running apps on a real design (or a student example design)
	6.2 The AHAA model
	 Understanding the various applications of formal verification
	 Bug avoidance
	 Bug hunting
	 Bug absence
	 Bug analysis
	 Understanding when and where to apply formal during a project
	6.3 Formal for designers
	Designer bring-up
	 Design visualisation, advanced lint, using apps, reachability
	Possible reuse by verification
	6.4 Formal reuse
	 Reuse of assertions between dynamic and static verifications
	 Running simulations with our formal assertions added on a real design (or a student example)
	design)
	Reuse in assume/guarantee relationships
	Assertions as VIP
	6.5 Formal in context
	Formal as part of a verification plan
	Combining formal results with other activities for a signoff decision
	6.6 What type of design and size of design is suitable?
17.00	Close
17.00	

1-day Advanced Formal

Day 1	
9.00	1 Introduction
	 What makes some properties hard to prove?
	 Examples of hard-to-prove properties

[
	• Why are they hard to prove?
	 Interpreting Unproven results
	 Example of an Unproven property on a real design (or a student example design)
10.00	2 Overview of techniques for resolving Unproven's
	 Review some techniques for trying to get Unproven properties to Proven or Failed – e.g. reduce
	input space, reduce data widths, use of additional constraints, abstractions, cut points, free
	variables, undriven signals, black boxes, models, etc
	 How to select the best technique for the given Unproven
11.00	Break
11.30	3 Applying simple techniques for resolving Unproven's
	• Start with simple techniques such as reduce input space, reduce data widths, use of additional
	constraints,
	 Example of applying these techniques on a real design (or a student example design)
	 abstractions, cut points, free variables, undriven signals and variables, black boxes, models, etc
13.00	Lunch
14.00	4 Applying advanced techniques for resolving Unproven's
	• Start with the following advanced techniques: abstractions, cut points, free variables, undriven
	signals,
	 Example of applying these techniques on a real design (or a student example design)
15.30	Break
16.00	5 Applying advanced techniques for resolving Unproven's
	 Start with the following advanced techniques: black boxes, models
	Consider some tool specific tips and tech
	 Example of applying these techniques on a real design (or a student example design)
	6 Summary
	What makes some properties hard to prove?
	The main techniques for overcoming Unproven's
	 Selecting the right technique for the right property
17.00	End