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• Jasper C Apps Overview 
• Key Components
• Jasper C Apps

o C2RTL
o HLSEC 
o CAF
o CFPV + CCoverage

Agenda
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Summary

Jasper® Visualize  
Interactive 

Environment

Leading Ease-of-Use

Broadest Range of 
Formal Solvers

 
Leading Performance 

and Capacity

Jasper Formal Verification Platform

C++ Frontend(s)

C++ Synthesis Engine

C2RTL CAF CFPV HLSEC

Jasper® C Apps

This slide contains forward-looking statements regarding Cadence's business or products.  Actual results may differ materially from the information presented here.
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Key Components
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• Excellent C/C++ language constructs and library support
o C99 and C++98, 03, 11, 14, 17 are all supported well, including template functions and 

classes
o C/C++ standard library (including STL containers)
o 400+ customer C++ models synthesized without any code change (mostly GPU and CPU)

• Dynamically sized structures are handled well:
o Unbounded loops, recursive function calls
o Dynamic memory allocation, Variable Length Arrays (VLAs)

• Autogenerated checks for C/C++ model 
o Helps catch bugs in the reference model itself
o Examples: Unresolved function pointers, C++ undefined behaviors, etc.

• Support for C/C++ user asserts

Jasper C/C++ Frontend
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• C++ language constructs and SystemC support
o C++ 98, 03, 11, 14 support
o SystemC 2.3.3 support
o 100+ customer HLS models synthesized without any code change

• Stratus  High Level Synthesis (HLS) integration
o Stratus HLS pragmas (HLS_INLINE_MODULE, METAPORT, etc.)
o Stratus libraries (cynw_p2p, cynw_float, etc.)

• Autogenerated checks for SystemC model
o Helps catch bugs in the reference model
o Example: Arithmetic overflow, invalid pointer dereference, etc.

• Support for SystemC asserts

Jasper SystemC Frontend
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1  #ifdef JASPER_C
 2    #include “jasperc.h"
 3  #endif
 4  
 5  int main() {
 6  
 7    unsigned short int ina[32];
 8    unsigned short int inb[32];
 9    unsigned short int out[32];
10    bool op;
11    
12  #ifdef JASPER_C
13    JASPER_INPUT_ARRAY(ina);
14    JASPER_INPUT_ARRAY(inb);
15    JASPER_INPUT(op);
16  #endif
17    
18    for(int i = 0; i < 32; ++i) {
19      if(op)
20        out[i] = ina[i] + inb[i];
21      else
22        out[i] = ina[i] - inb[i];  
23    }
24  
25  #ifdef JASPER_C
26    JASPER_OUTPUT_ARRAY(out);
27  #endif
28  
29  }

Setting Up Your Code

Jasper header file to be included

Optional: 
Macro defined within C2RTL while parsing C++ code

• JASPER_C

Jasper methods to identify inputs:
• JASPER_INPUT (var_name)
• JASPER_INPUT_ARRAY (var_name)
• JASPER_INPUT_LVAL (LHS_expression, var_name) 

JG methods to identify outputs:
• JASPER_OUTPUT (name)
• JASPER_OUTPUT_ARRAY (name)
• JASPER_OUTPUT_RVAL(RHS_expression, var_name)
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• C++ compilation profiler time and memory

New Capabilities



© 2025 Cadence Design Systems, Inc. All rights reserved..10

• C++ compilation profiler time and memory
• Support arrays of structs or nested structs as I/O of the formal model
• Conditional interface macros

New Capabilities

#include <jasperc.h>

struct A { int x; int y;};
Struct B { A a; }

int main()
{
 B b;
 JASPER_INPUT(b);

 A arr[10];
 JASPER_INPUT(arr);
  ...
  return 0;
}

int main() { 
  int x, y; 
  JASPER_INPUT(x); 
  if (x < 10) {   
     y = x;  
     JASPER_OUTPUT(y); 
  }
}

Formal model behaves as follows:
y_jasper_valid = x < 10;
y = y_jasper_valid ? y_original : free;
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• C++ compilation profiler time and memory
• Support arrays of structs or nested structs as I/O of the formal model
• Conditional interface macros
• Support for additional math functions (asin*, sincos*)

o set_cfe_compile_extended_math true/false (enable/disable support for difficult math.h fcts)

• Support for arithmetic datatypes (ac_int)
o Recommendation to switch from SystemC to arithmetic datatypes (sc_int/sc_bigint → ac_int) 

• Pedantic mode in Jasper® C compilation
• Sanity assertion for array out-of-bound write

New Capabilities

int array[8];
int index = 8;
array[index] = 12;  // ArrayOutOfBoundWrite violation: index is too large
array[index-9] = 12; // ArrayOutOfBoundWrite violation: index is negative
array[index-1] = 12; // OK
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Key Components

Broadest Range of 
Formal Solvers

 

Leading Performance 
and Capacity

Jasper Formal Verification Platform

C/C++/SC Frontend(s) Jasper® Visualize  
Interactive 

Environment

Leading Ease-of-Use



© 2025 Cadence Design Systems, Inc. All rights reserved..13

• State-of-the-art datapath proof stack
o Powerful bit-level and word-level solvers
o Industry-leading powerful engines

• Datapath-specific optimizations:
o Support for floating-point multiplication 

to minimize manual case splits
o Dedicated handling of large integer multipliers implemented 

using smaller multipliers and adders
o Word-level arithmetic abstractions, term-rewriting and 

normalisation, and reductions on the size of vectors

• Specialized bit-level multiplier handling
o Special engines to verify bit-level implementations of array 

multipliers, radix2, radix4 booth multipliers, with variants like 
Baugh Wooley

Datapath Proof Engines 16 Word-level 
engines

15 variants (processes per 
engine) each for different 

hardware architectures and 
sequential depth 

optimizations 
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• Proofgrid support
o Manages 1000+ parallel proof jobs on a server farm

• ML-based proof orchestration
o Auto engine/solver selection, ML-based engine optimizations

• Prove cache and PPD
o Use learnings from previous runs for engine choices
o Save compute resources if design/env changes do not impact the assertion

• Powerful Jasper interactive proof cockpit through proof structure
o Assume-guarantee, cutpoints, and intermediate helper lemmas
o All environment modifications without the need to recompile

Datapath Proof

Case split 
operation

Multiple Levels of 
Assume-guarantee

Stopat Operation
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• New engine WHs focusing on proof search
o Use it if engines find a high bound but no proof

• Engine improvements focused on handling
o Many different bit-level multiplier designs
o More complex general designs, e.g., FMAs, dot-products, etc.

• Comparison of bit-level vs datapath engines on customer testcases:

Latest Improvements

Details Jasper Bit-Level Engines Datapath Engines
Tcase - 1 Fixed-point multiply with variable decimal location 10 mins 20 seconds
... ... ... ...

Tcase-10 Dot product (8 products of fp16/bf16/fp32 being added 
together) NA ~95 mins

Tcase-11 2048-point FFT NA ~1 day (proof decomposed)

Tcase-12 Dot product (64 products of fp16/bf16 being added 
together) NA 3.3 days
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• Dual debug for C/C++/SystemC vs RTL
• RTL-like waveform debug

o Why tracing in C
o Driver/load tracing
o Value annotation in source

• Specialized debug
o All variables/function-calls are uniquely 

identifiable and plottable
o Full call stack in variable names

• Powerful Jasper® Visualize
Interactive Debug Environment features 
integrated 
o What-if analysis
o Quiet trace 
o Freeze and extend, etc.

Jasper C Debug
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New Capabilities: GDB Debug
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Jasper C2RTL
Datapath Verification App
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C2RTL App GUI
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(RTL)

Source 
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Source 
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results
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• Integration in Jasper® Platform
o Same setup, same look-and-feel, easy to get started

• Best-in-class bit-level and word-level solvers and datapath-specific abstractions
o Reduces manual work (like proof decomposition)

• Broad C++ language support with C/C++ standard library support, including STLs
o A large class of C programs is handled without code changes

• Verification of control and data transformations simultaneously
o No need to separate datapath (reduces required expert knowledge)

Key Features
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Jasper C2RTL: Essential for Datapath Verification
Intel @ JUG 2021 

Datapath Formal Verification 101: Technology + Technique
NXP @ CDNLive India 2022 

Exhaustive formal datapath verification of RISCV-based 
Floating Point Units

Infineon @ CDNLive EMEA 2023 
Formal Datapath Verificaiton using High-Level 

Equivalence Checking
(SIMD multipliers, dividers & FIR filters)

ST @ CDNLive EMEA 2023 
FV techniques to check equivalence between 

high level C model from Matlab vs RTL for 
Signal Processing IPs

TI @ CDNLive India 2023 
C2RTL gives ~40x productivity & exhaustive 

verification on Floating Point and Trigonometric 
operations

ARM @ JUG 2023
Functional Verification of prediction algorithms 

with C vs RTL

Intel @ JUG India 2024
Software formal for Firmware

AheadComputing @ JUG 2025
RISC-V Arithmetic FV Shift Left of Bug Finding 

& FP Complex Proofs using C2RTLIntel @ JUG 2025
Symbiotic relation of tool and design: 

Advancing C2RTL methodology
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Jasper HLSEC 
Equivalence check between SystemC design and HLS generated RTL
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HLSEC App GUI

Spec 
(SystemC)

Imp
(RTL)

Source 
code

Source 
code

Mapping and 
verification 

results
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• Working with selected customers
o Jasper® C HLSEC App flow is working well in all engagements
o Excellent proof capacity and performance already demonstrated on multiple designs

• Frontend:
o No gaps in ongoing engagements
o Goal: Consume all SystemC code that Stratus can compile
o R&D is constantly working on closing gaps against the Stratus  High-Level Synthesis (HLS) 

frontend
• Proof strategies

o Tuning of existing Jasper proof strategies (from SEC and C2RTL datapath) already showing 
excellent results on cycle-accurate problems as well as non-cycle-accurate ones

o Work is ongoing for enhancing proof capacity using hints on internal equivalence from Stratus 
HLS flow

• Results/Benchmark: 
o Besides testcases from customers, we are working on ~7000+ testcases from Stratus HLS 

regressions to identify and close the frontend gaps.
• Debug

o Native debug through SystemC code in Jasper® Visualize Interactive Debug Environment is 
working

HLSEC App Status
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Jasper CAF
Auto Formal for C/C++/SystemC designs
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Automatic 
Formal Checks

Auto functional checks, violation debug and waiver handling 
based on best-in-class formal analysis

LPDDR NAND
FLASH

Reachability

FSM Livelock 
/deadlock

Pointer 
Overflow

Out of bounds 
array indexing

Arithmetic 
overflow

Bus contention

Conversion 
Precision loss

Jasper® Visualize Interactive Debug Environment

Low-noise violation 
and waiver handling

Best-in-class debug

Enabled by true 
formal technology

Jasper CAF Overview

C/C++ or
SystemC Model
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• Brings RTL-level auto formal checks to high-level design domain
o Left shift in verification productivity

• Comprehensive SystemC model signoff
o Signoff against a set of static lint and auto-formal checks
o All checks are ‘automatic’ and the user just inputs SystemC model + constraints

• Features borrowed from industry-leading Jasper® Superlint App
o Violation view (for non-formal users)
o Formal property view (for formal-savvy users)
o Persistent and highly portable waiver mechanism
o Auto grouping for efficient analysis
o Observability enabled debug

Key Features
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CAF App GUI

Groups

Checks

Source 
code

Waives



© 2025 Cadence Design Systems, Inc. All rights reserved..30

Jasper CFPV and CCoverage 
Formal property verification for C/C++/SystemC designs
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• CFPV App for exploration:
o Jasper® Visualize Interactive Debug Environment is used without properties to exercise 

interesting design behavior
• CFPV App for verification:

o Used as a “classic formal” tool, with assertions and constraints written in SVA
o Metric-driven sign-off methodology (based on Coverage) on the roadmap for next year.

CFPV App Flow

Visualize
waveform

C/C++/
SystemC
Design

Formal proofs
Jasper w/Visualize

CFPV

Constraints

Assertions

This slide contains forward-looking statements regarding Cadence's business or products.  Actual results may differ materially from the information presented here.



© 2025 Cadence Design Systems, Inc. All rights reserved..32

CFPV App GUI

Call 
stack

C/C++/
SystemC

Properties
Proof 

Structure
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CCoverage

Stimuli Coverage

C/C++/
SystemC
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Summary

Jasper® Visualize  
Interactive 

Environment

Leading Ease-of-Use
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Jasper Formal Verification Platform

C++ Frontend(s)

C++ Synthesis engine

C2RTL CAF CFPV HLSEC

Jasper  C Apps

This slide contains forward-looking statements regarding Cadence's business or products.  Actual results may differ materially from the information presented here.
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