
Taking Formal Verification to a Higher-Level with
Jasper C
Cadence Jasper C team
November 18, 2025

© 2025 Cadence Design Systems, Inc. All rights reserved..2

• Jasper C Apps Overview
• Key Components
• Jasper C Apps

o C2RTL
o HLSEC
o CAF
o CFPV + CCoverage

Agenda

© 2025 Cadence Design Systems, Inc. All rights reserved..3

General High-Level Design

Jasper C Apps Verification Solutions

C/C++ Algorithm Development

Algorithm
Development in

C/C++

RTL DV
Environment
(Jasper/XLM)

C / C++

RTL

Implementation

System Modeling
in SystemC

reference High-level
Synthesis
(Stratus)

RTL

Implementation

SystemC

Equivalent? Equivalent?

C2RTL HLSEC

LINT Clean?

CFPV

CAF

Functionally
correct?

CCoverage

Code
Coverage

….
SystemC

SystemC

HLSEC

© 2025 Cadence Design Systems, Inc. All rights reserved..4

Summary

Jasper® Visualize
Interactive

Environment

Leading Ease-of-Use

Broadest Range of
Formal Solvers

Leading Performance

and Capacity

Jasper Formal Verification Platform

C++ Frontend(s)

C++ Synthesis Engine

C2RTL CAF CFPV HLSEC

Jasper® C Apps

This slide contains forward-looking statements regarding Cadence's business or products. Actual results may differ materially from the information presented here.

C2RTL
Functional equivalence

between C/C++ and RTL

Production

C Auto Formal
Lint + Advanced formal checks
for C/C++/SystemC models and

HLS designs

Early Access
Available

CFPV
Property checking for

C/C++/SystemC Models

Early Access
Available

HLSEC
Verify correctness of
High-Level Synthesis

(SystemC vs RTL)

Restricted
Release

CCoverage
Stimuli coverage

for C++ code
Early Access

Q1’2026

© 2025 Cadence Design Systems, Inc. All rights reserved..5

Key Components

Broadest Range of
Formal Solvers

Leading Performance
and Capacity

Jasper Formal Verification Platform

C++ Frontend(s) Jasper® Visualize
Interactive

Environment

Leading Ease-of-Use

© 2025 Cadence Design Systems, Inc. All rights reserved..6

• Excellent C/C++ language constructs and library support
o C99 and C++98, 03, 11, 14, 17 are all supported well, including template functions and

classes
o C/C++ standard library (including STL containers)
o 400+ customer C++ models synthesized without any code change (mostly GPU and CPU)

• Dynamically sized structures are handled well:
o Unbounded loops, recursive function calls
o Dynamic memory allocation, Variable Length Arrays (VLAs)

• Autogenerated checks for C/C++ model
o Helps catch bugs in the reference model itself
o Examples: Unresolved function pointers, C++ undefined behaviors, etc.

• Support for C/C++ user asserts

Jasper C/C++ Frontend

© 2025 Cadence Design Systems, Inc. All rights reserved..7

• C++ language constructs and SystemC support
o C++ 98, 03, 11, 14 support
o SystemC 2.3.3 support
o 100+ customer HLS models synthesized without any code change

• Stratus High Level Synthesis (HLS) integration
o Stratus HLS pragmas (HLS_INLINE_MODULE, METAPORT, etc.)
o Stratus libraries (cynw_p2p, cynw_float, etc.)

• Autogenerated checks for SystemC model
o Helps catch bugs in the reference model
o Example: Arithmetic overflow, invalid pointer dereference, etc.

• Support for SystemC asserts

Jasper SystemC Frontend

© 2025 Cadence Design Systems, Inc. All rights reserved..8

1 #ifdef JASPER_C
 2 #include “jasperc.h"
 3 #endif
 4
 5 int main() {
 6
 7 unsigned short int ina[32];
 8 unsigned short int inb[32];
 9 unsigned short int out[32];
10 bool op;
11
12 #ifdef JASPER_C
13 JASPER_INPUT_ARRAY(ina);
14 JASPER_INPUT_ARRAY(inb);
15 JASPER_INPUT(op);
16 #endif
17
18 for(int i = 0; i < 32; ++i) {
19 if(op)
20 out[i] = ina[i] + inb[i];
21 else
22 out[i] = ina[i] - inb[i];
23 }
24
25 #ifdef JASPER_C
26 JASPER_OUTPUT_ARRAY(out);
27 #endif
28
29 }

Setting Up Your Code

Jasper header file to be included

Optional:
Macro defined within C2RTL while parsing C++ code

• JASPER_C

Jasper methods to identify inputs:
• JASPER_INPUT (var_name)
• JASPER_INPUT_ARRAY (var_name)
• JASPER_INPUT_LVAL (LHS_expression, var_name)

JG methods to identify outputs:
• JASPER_OUTPUT (name)
• JASPER_OUTPUT_ARRAY (name)
• JASPER_OUTPUT_RVAL(RHS_expression, var_name)

© 2025 Cadence Design Systems, Inc. All rights reserved..9

• C++ compilation profiler time and memory

New Capabilities

© 2025 Cadence Design Systems, Inc. All rights reserved..10

• C++ compilation profiler time and memory
• Support arrays of structs or nested structs as I/O of the formal model
• Conditional interface macros

New Capabilities

#include <jasperc.h>

struct A { int x; int y;};
Struct B { A a; }

int main()
{
 B b;
 JASPER_INPUT(b);

 A arr[10];
 JASPER_INPUT(arr);
 ...
 return 0;
}

int main() {
 int x, y;
 JASPER_INPUT(x);
 if (x < 10) {
 y = x;
 JASPER_OUTPUT(y);
 }
}

Formal model behaves as follows:
y_jasper_valid = x < 10;
y = y_jasper_valid ? y_original : free;

© 2025 Cadence Design Systems, Inc. All rights reserved..11

• C++ compilation profiler time and memory
• Support arrays of structs or nested structs as I/O of the formal model
• Conditional interface macros
• Support for additional math functions (asin*, sincos*)

o set_cfe_compile_extended_math true/false (enable/disable support for difficult math.h fcts)

• Support for arithmetic datatypes (ac_int)
o Recommendation to switch from SystemC to arithmetic datatypes (sc_int/sc_bigint → ac_int)

• Pedantic mode in Jasper® C compilation
• Sanity assertion for array out-of-bound write

New Capabilities

int array[8];
int index = 8;
array[index] = 12; // ArrayOutOfBoundWrite violation: index is too large
array[index-9] = 12; // ArrayOutOfBoundWrite violation: index is negative
array[index-1] = 12; // OK

© 2025 Cadence Design Systems, Inc. All rights reserved..12

Key Components

Broadest Range of
Formal Solvers

Leading Performance
and Capacity

Jasper Formal Verification Platform

C/C++/SC Frontend(s) Jasper® Visualize
Interactive

Environment

Leading Ease-of-Use

© 2025 Cadence Design Systems, Inc. All rights reserved..13

• State-of-the-art datapath proof stack
o Powerful bit-level and word-level solvers
o Industry-leading powerful engines

• Datapath-specific optimizations:
o Support for floating-point multiplication

to minimize manual case splits
o Dedicated handling of large integer multipliers implemented

using smaller multipliers and adders
o Word-level arithmetic abstractions, term-rewriting and

normalisation, and reductions on the size of vectors

• Specialized bit-level multiplier handling
o Special engines to verify bit-level implementations of array

multipliers, radix2, radix4 booth multipliers, with variants like
Baugh Wooley

Datapath Proof Engines 16 Word-level
engines

15 variants (processes per
engine) each for different

hardware architectures and
sequential depth

optimizations

© 2025 Cadence Design Systems, Inc. All rights reserved..14

• Proofgrid support
o Manages 1000+ parallel proof jobs on a server farm

• ML-based proof orchestration
o Auto engine/solver selection, ML-based engine optimizations

• Prove cache and PPD
o Use learnings from previous runs for engine choices
o Save compute resources if design/env changes do not impact the assertion

• Powerful Jasper interactive proof cockpit through proof structure
o Assume-guarantee, cutpoints, and intermediate helper lemmas
o All environment modifications without the need to recompile

Datapath Proof

Case split
operation

Multiple Levels of
Assume-guarantee

Stopat Operation

© 2025 Cadence Design Systems, Inc. All rights reserved..15

• New engine WHs focusing on proof search
o Use it if engines find a high bound but no proof

• Engine improvements focused on handling
o Many different bit-level multiplier designs
o More complex general designs, e.g., FMAs, dot-products, etc.

• Comparison of bit-level vs datapath engines on customer testcases:

Latest Improvements

Details Jasper Bit-Level Engines Datapath Engines
Tcase - 1 Fixed-point multiply with variable decimal location 10 mins 20 seconds
...

Tcase-10 Dot product (8 products of fp16/bf16/fp32 being added
together) NA ~95 mins

Tcase-11 2048-point FFT NA ~1 day (proof decomposed)

Tcase-12 Dot product (64 products of fp16/bf16 being added
together) NA 3.3 days

© 2025 Cadence Design Systems, Inc. All rights reserved..16

Key Components

Broadest Range of
Formal Solvers

Leading Performance
and Capacity

Jasper Formal Verification Platform

C/C++/SC Frontend(s) Jasper® Visualize
Interactive

Environment

Leading Ease-of-Use

© 2025 Cadence Design Systems, Inc. All rights reserved..17

• Dual debug for C/C++/SystemC vs RTL
• RTL-like waveform debug

o Why tracing in C
o Driver/load tracing
o Value annotation in source

• Specialized debug
o All variables/function-calls are uniquely

identifiable and plottable
o Full call stack in variable names

• Powerful Jasper® Visualize
Interactive Debug Environment features
integrated
o What-if analysis
o Quiet trace
o Freeze and extend, etc.

Jasper C Debug

© 2025 Cadence Design Systems, Inc. All rights reserved..18

New Capabilities: GDB Debug

© 2025 Cadence Design Systems, Inc. All rights reserved..19

Jasper C2RTL
Datapath Verification App

© 2025 Cadence Design Systems, Inc. All rights reserved..20

C2RTL App GUI

Spec
(C/C++) Imp

(RTL)

Source
code

Source
code

Properties &
verification

results

© 2025 Cadence Design Systems, Inc. All rights reserved..21

• Integration in Jasper® Platform
o Same setup, same look-and-feel, easy to get started

• Best-in-class bit-level and word-level solvers and datapath-specific abstractions
o Reduces manual work (like proof decomposition)

• Broad C++ language support with C/C++ standard library support, including STLs
o A large class of C programs is handled without code changes

• Verification of control and data transformations simultaneously
o No need to separate datapath (reduces required expert knowledge)

Key Features

© 2025 Cadence Design Systems, Inc. All rights reserved..22

Jasper C2RTL: Essential for Datapath Verification
Intel @ JUG 2021

Datapath Formal Verification 101: Technology + Technique
NXP @ CDNLive India 2022

Exhaustive formal datapath verification of RISCV-based
Floating Point Units

Infineon @ CDNLive EMEA 2023
Formal Datapath Verificaiton using High-Level

Equivalence Checking
(SIMD multipliers, dividers & FIR filters)

ST @ CDNLive EMEA 2023
FV techniques to check equivalence between

high level C model from Matlab vs RTL for
Signal Processing IPs

TI @ CDNLive India 2023
C2RTL gives ~40x productivity & exhaustive

verification on Floating Point and Trigonometric
operations

ARM @ JUG 2023
Functional Verification of prediction algorithms

with C vs RTL

Intel @ JUG India 2024
Software formal for Firmware

AheadComputing @ JUG 2025
RISC-V Arithmetic FV Shift Left of Bug Finding

& FP Complex Proofs using C2RTLIntel @ JUG 2025
Symbiotic relation of tool and design:

Advancing C2RTL methodology

© 2025 Cadence Design Systems, Inc. All rights reserved..23

Jasper HLSEC
Equivalence check between SystemC design and HLS generated RTL

© 2025 Cadence Design Systems, Inc. All rights reserved..24

HLSEC App GUI

Spec
(SystemC)

Imp
(RTL)

Source
code

Source
code

Mapping and
verification

results

© 2025 Cadence Design Systems, Inc. All rights reserved..25

• Working with selected customers
o Jasper® C HLSEC App flow is working well in all engagements
o Excellent proof capacity and performance already demonstrated on multiple designs

• Frontend:
o No gaps in ongoing engagements
o Goal: Consume all SystemC code that Stratus can compile
o R&D is constantly working on closing gaps against the Stratus High-Level Synthesis (HLS)

frontend
• Proof strategies

o Tuning of existing Jasper proof strategies (from SEC and C2RTL datapath) already showing
excellent results on cycle-accurate problems as well as non-cycle-accurate ones

o Work is ongoing for enhancing proof capacity using hints on internal equivalence from Stratus
HLS flow

• Results/Benchmark:
o Besides testcases from customers, we are working on ~7000+ testcases from Stratus HLS

regressions to identify and close the frontend gaps.
• Debug

o Native debug through SystemC code in Jasper® Visualize Interactive Debug Environment is
working

HLSEC App Status

© 2025 Cadence Design Systems, Inc. All rights reserved..26

Jasper CAF
Auto Formal for C/C++/SystemC designs

© 2025 Cadence Design Systems, Inc. All rights reserved..27

Automatic
Formal Checks

Auto functional checks, violation debug and waiver handling
based on best-in-class formal analysis

LPDDR NAND
FLASH

Reachability

FSM Livelock
/deadlock

Pointer
Overflow

Out of bounds
array indexing

Arithmetic
overflow

Bus contention

Conversion
Precision loss

Jasper® Visualize Interactive Debug Environment

Low-noise violation
and waiver handling

Best-in-class debug

Enabled by true
formal technology

Jasper CAF Overview

C/C++ or
SystemC Model

© 2025 Cadence Design Systems, Inc. All rights reserved..28

• Brings RTL-level auto formal checks to high-level design domain
o Left shift in verification productivity

• Comprehensive SystemC model signoff
o Signoff against a set of static lint and auto-formal checks
o All checks are ‘automatic’ and the user just inputs SystemC model + constraints

• Features borrowed from industry-leading Jasper® Superlint App
o Violation view (for non-formal users)
o Formal property view (for formal-savvy users)
o Persistent and highly portable waiver mechanism
o Auto grouping for efficient analysis
o Observability enabled debug

Key Features

© 2025 Cadence Design Systems, Inc. All rights reserved..29

CAF App GUI

Groups

Checks

Source
code

Waives

© 2025 Cadence Design Systems, Inc. All rights reserved..30

Jasper CFPV and CCoverage
Formal property verification for C/C++/SystemC designs

© 2025 Cadence Design Systems, Inc. All rights reserved..31

• CFPV App for exploration:
o Jasper® Visualize Interactive Debug Environment is used without properties to exercise

interesting design behavior
• CFPV App for verification:

o Used as a “classic formal” tool, with assertions and constraints written in SVA
o Metric-driven sign-off methodology (based on Coverage) on the roadmap for next year.

CFPV App Flow

Visualize
waveform

C/C++/
SystemC
Design

Formal proofs
Jasper w/Visualize

CFPV

Constraints

Assertions

This slide contains forward-looking statements regarding Cadence's business or products. Actual results may differ materially from the information presented here.

© 2025 Cadence Design Systems, Inc. All rights reserved..32

CFPV App GUI

Call
stack

C/C++/
SystemC

Properties
Proof

Structure

© 2025 Cadence Design Systems, Inc. All rights reserved..33

CCoverage

Stimuli Coverage

C/C++/
SystemC

© 2025 Cadence Design Systems, Inc. All rights reserved..34

Summary

Jasper® Visualize
Interactive

Environment

Leading Ease-of-Use

Broadest Range of
Formal Solvers

Leading Performance

and Capacity

Jasper Formal Verification Platform

C++ Frontend(s)

C++ Synthesis engine

C2RTL CAF CFPV HLSEC

Jasper C Apps

This slide contains forward-looking statements regarding Cadence's business or products. Actual results may differ materially from the information presented here.

C2RTL
Functional equivalence

between C/C++ and RTL

Production

C Auto Formal
Lint + Advanced formal checks
for C/C++/SystemC models and

HLS designs

Early Access
Available

CFPV
Property checking for

C/C++/SystemC Models

Early Access
Available

HLSEC
Verify correctness of
High-Level Synthesis

(SystemC vs RTL)

Restricted
Release

CCoverage
Stimuli coverage

for C++ code
Early Access

Q1’2026

https://www.cadence.com/go/trademarks© 2025 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence
Design Systems, Inc. Accellera and SystemC are trademarks of Accellera Systems Initiative Inc. All Arm products are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All MIPI
specifications are registered trademarks or service marks owned by MIPI Alliance.All PCI-SIG specifications are registered trademarks or trademarks of PCI-SIG. All other trademarks are the property of their respective owners.

https://www.cadence.com/go/trademarks

	Slide 1: Taking Formal Verification to a Higher-Level with Jasper C
	Slide 2: Agenda
	Slide 3: Jasper C Apps Verification Solutions
	Slide 4: Summary
	Slide 5: Key Components
	Slide 6: Jasper C/C++ Frontend
	Slide 7: Jasper SystemC Frontend
	Slide 8: Setting Up Your Code
	Slide 9: New Capabilities
	Slide 10: New Capabilities
	Slide 11: New Capabilities
	Slide 12: Key Components
	Slide 13: Datapath Proof Engines
	Slide 14: Datapath Proof
	Slide 15: Latest Improvements
	Slide 16: Key Components
	Slide 17: Jasper C Debug
	Slide 18: New Capabilities: GDB Debug
	Slide 19: Jasper C2RTL
	Slide 20: C2RTL App GUI
	Slide 21: Key Features
	Slide 22: Jasper C2RTL: Essential for Datapath Verification
	Slide 23: Jasper HLSEC
	Slide 24: HLSEC App GUI
	Slide 25: HLSEC App Status
	Slide 26: Jasper CAF
	Slide 27: Jasper CAF Overview
	Slide 28: Key Features
	Slide 29: CAF App GUI
	Slide 30: Jasper CFPV and CCoverage
	Slide 31: CFPV App Flow
	Slide 32: CFPV App GUI
	Slide 33: CCoverage
	Slide 34: Summary
	Slide 35
	Slide 36: Preview: C2RTL Agent
	Slide 37: License Structure for all Apps
	Slide 38: Proof Engines: Comparison
	Slide 39: High-Level Design Formal Verification Landscape (HLS Centric Flow)

