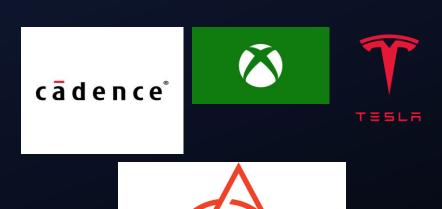


Datacenter Performance. Edge Efficiency. Accelerating Inference, Everywhere.

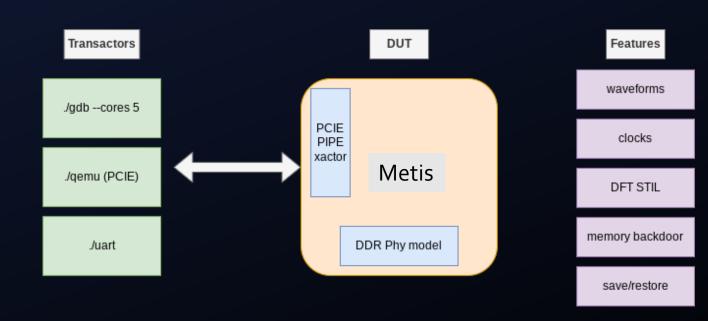

Emulation: from C Tests to Tapeout - a Case Stud

DVClub World - November 25 2025

Antoine Madec

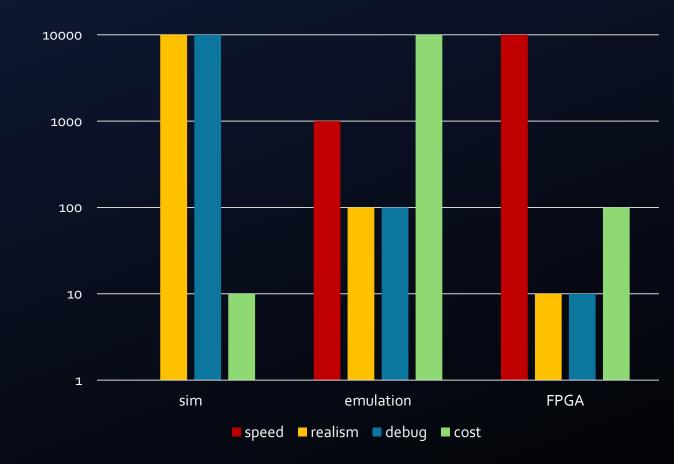
Who am I?

- 14 years in simulation & emulation
- Europe and US
- Technical leader, FAE, manager: always hands-on
- Teams from 3 to 12 people
- Block-level / Top-level
- Automotive, Video Decoder, Al
- Axelera Al: accelerating inference



A case study

- Just our opinion
 - Depends on the project, the needs
 - Might not work for you
- Key figures about Metis
 - 1 year: from Emulation start to chip bringup
 - multi-CPUs
 - 1 day: functional test bringup
 - DDR: 1 week
 - PCle: 1 week



Verification platform landscape

Where does emulation fit?

- Simulation at top-level is too slow
 - Emulation, models, etc, are a must
 - The right platform for the right tests for the right interfaces
 - Trade-offs are inevitable
 - Speed
 - Realism
 - Debugability
 - Platform bring-up time
 - Price
- It is our job to choose the right platform

Emulation cloud setup

Why choosing the cloud?

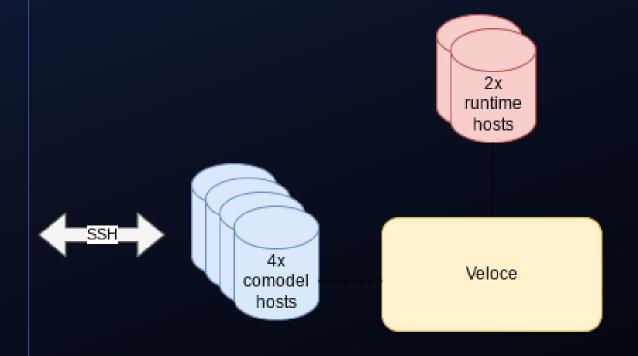
- ICE vs virtual emulation
- Our needs
 - CPU based tests
 - Some PCle tests
 - Flash/mem models
 - UART, gdb, etc
- Conclusion: virtual emulation
 - Simpler, setup the **Veloce** once
 - Cloud: emulation as a service
 - Subscription model

Building Emulation databases (1)

Getting and modifying RTL sources

- Getting files
 - Easy tool to fetch files is critical
 - Same tool for sim, emu and synthesis
 - Different targets: emulation/simulation/RTL
- Emulation models
 - RAMs/ROMs/OTP
 - Flashes: Siemens Softmodels
 - RNG ring oscillators: \$urandom with XRTL
 - Matrix multiplication: save AVB

Don't model


- PLL -> drive output clock directly
- Analog sensors -> use simulation
- PHYs (DDR, PCIe) -> Siemens Virtualab
 - Use sim to test PHY programming
 - PHYs aren't real, just models
 - Impact of performance
- Do not be afraid to experiment to speed up your process

Building Emulation databases (2)

Taking advantage of the Cloud

- 4 comodels and 2 runtime servers
 - Ssh == accessible from our Network
 - Administered by our IT
- Nightly Cl
 - Running on gitlab
 - 10h builds / 2h tests
- Release system
 - Built by the nightly Cl
 - Users: copy/paste in the morning
 - Top platforms with different stubs
 - 3 to 24 boards

The human factor

Emulation is a cross-team effort

- Love thy EDA consultant
 - Trust: being fair / demanding

FW/DV communication is critical

- FW and DV: a gradient in Verification
 - Running C code on CPUs
 - DV can write C driver
 - FW can debug waveforms
- Bringup will run C code on CPUs, not SV
- Weekly meetings, daily chats
- Using the same Git repo
- Other users
 - Architects: perf and compliance tests
 - Application SW
 - DFT

"I see ourselves as one big Verification team composed of people with different skillsets"

- Jovin Langenegger

Engineering Manager - Al Embedded Software

Runtime (1)

C tests

- Building SW test
 - Bin to hex files: in sim and emu
 - Backdoor loading of the memories
 - Can also load the ELF through GDB
 - slower, more realistic
 - bringup preparation
- Building the TCL runtime script
 - Bash script
 - generates TCL script: templates
 - calls velrun (EDA specific)
 - misc: flash, snapshots (Linux boot), etc.

```
./run --help
./run test_hello_world
./run test_hello_world --clock fast
./run test_hello_world --dump_cpu_instructions
./run test_hello_world --xwaves noc
./run test_hello_world --no_printf
./run test_hello_world --coverage

./run test_hello_world --interactive
```

- Pass/Fail
 - **GPIO[2]**: test is finished
 - GPIO[3]: pass/fail

Runtime (2)

CI

- MR pipeline
 - Simulation runs
 - Same SW build flow
 - Same top platforms (stubs)
 - Emulation sanity check
 - Cannot run full compilation
- Nightly Cl
 - Back-to-back test
 - Start TCL server when starting emulation
 - Saves overhead of start/finish
 - Test as fast as 5s
 - Gather IO toggle coverage
 - on top instances
 - merge emulation + simulation coverage
 - good integration metric

Runtime (3)

Debug

- Avoid waveforms when possible
 - Too slow
 - Logs: XRTL + \$write()
 - CPU traces
 - Codelink?
 - fw_trace_utils
 - EDA agnostic
 - no license
 - Adapt to any CPU
- Xwaves (EDA specific)
 - Great for performance debugging
 - Add relevant signals at compile time
- Switch to simulation
 - For short tests
 - Same platforms, same tools
 - Slower, easier waveform debugging

```
7007264: 97 65 9b 00 auipc al, 0xb6
7007268: 83 b5 45 4a ld al, 0x4a4(al)
|  | // First core: Initialization.
#ifndef NO INIT BSS AND TLS
    init complete = 1;
      while (init complete == 0);
                                                                                                                                                                                                                                                                         70072b0: 03 35 c5 49 ld a0, 0x49c(a0)
70072b4: 02 95 jalr a0
                                                                                                                                                           l main
```


Conclusion

Key take-aways

- Emulation: top-level crossroad
 - Factorize tools, code and effort
 - Sim/emu, verif/bringup, FW/DV
 - Work with multiple departments
 - Efficiency > politics
 - FW and DV relationship is critical
 - Make it user friendly
 - releases, run scripts
 - Arch, FW, application SW, DFT
- Our successful choices
 - Leverage Cl and Cloud: builds, coverage
 - Know when to rely on EDA tools, when to code it yourself
 - Simulation: close to emulation, complements emulation
 - The right trade-offs: efficiency > realism

Conclusion

- Emulation is now our main top-level DV platform
 - Metis: bringup functional test in 1 day
 - New projects: more users, more complexity

Thank You!

