
Datacenter Performance. Edge Efficiency.
Accelerating Inference, Everywhere.

In-house tool development 
for offline debugging
Presenter: Jerome Sauger
23/09/2025



• Top-level verification flow
• Setup

• Our top-level tests and drivers are written in C and run on several platforms:

Spike, RISC-V ISA SimulatorEmulationSimulation

https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim


• Top-level verification flow
• Debugging options

• Online debugging (i.e. gdb)
• Doable for spike and emulator
• Requires a functioning debug infrastructure at the top-level
• Emulator resources are scarce ➔ the less time a user spends on it, the better

• Offline debugging

• Waves:

• CPU registers are not always easy to locate

• Tedious to navigate

• Get slower to generate as the size of design increases

• CPU trace logs

• Automatically generated by Spike

• Can be generated on the other platforms by binding instruction tracers to all CPUs

M ost viable option



• Parsing the trace logs
• Constraints

• Several trace formats coexist depending on the CPU or the platform

• Commercial tools exist but they require licensing and do not support these formats

➔ Creating our own tool was the way to go

Vendor A CPU

Vendor B CPU

Spike

inst_trace_cpu_a.log

inst_trace_cpu_b.log

inst_trace_spike.log



• Parsing the trace logs
• Trace format

Timestamp Instruction address / PC

Can be matched 
against the 
disassembly of the 
original elf



• Parsing the trace logs
• Reconstituting the execution flow

Read the instruction address Check if it matches a function 
address

Check if it matches a "ret" 
instruction

We entered 
a function

We exited 
a function



• Parsing the trace logs
• Quick recap

• Through simple parsing of the trace logs and the disassembly file, we have obtained:

• The function call tree

• Profiling information

• How many times a function was invoked

• How much time each invocation took

• When each call happened



• Displaying the information
• Leveraging neovim capabilities

• Neovim 

• Is installed on all our machines

• Final setup:

• Runs in the terminal • Is easily scriptable (lua)

inst_trace.log

execution_info.json

disassembly.S



• Displaying the information
• Overview



• Displaying the information

• Automated synchronization between trace and disassembly

• Features



• Displaying the information
• Features

• Possibility to navigate from one function to another



• Displaying the information
• Features

• Visualize multiple CPU traces at the same time

• Possibility to synchronize the cursors



• Viewing source code

• The source code line for an instruction can be obtained with riscv64-unknown-elf-addr2line



• Conclusion

• C tests are best debugged with CPU traces

• Perks of developing our tool:

• The initial version took only a week of development

• Free

• Useful to everyone doing firmware

• Tailored to our use cases

• Not tied to any simulator/specific tool 



Thank You!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

